ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersal-induced growth in a time-periodic environment

302   0   0.0 ( 0 )
 نشر من قبل Guy Katriel
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Guy Katriel




اسأل ChatGPT حول البحث

Dispersal-induced growth (DIG) occurs when two populations with time-varying growth rates, each of which, when isolated, would become extinct, are able to persist and grow exponentially when dispersal among the two populations is present. This work provides a mathematical exploration of this surprising phenomenon, in the context of a deterministic model with periodic variation of growth rates, and characterizes the factors which are important in generating the DIG effect and the corresponding conditions on the parameters involved.



قيم البحث

اقرأ أيضاً

In his seminal work in the 1970s Robert May suggested that there was an upper limit to the number of species that could be sustained in stable equilibrium by an ecosystem. This deduction was at odds with both intuition and the observed complexity of many natural ecosystems. The so-called stability-diversity debate ensued, and the discussion about the factors making an ecosystem stable or unstable continues to this day. We show in this work that dispersal can be a destabilising influence. To do this, we combine ideas from Alan Turings work on pattern formation with Mays random-matrix approach. We demonstrate how a stable equilibrium in a complex ecosystem with two trophic levels can become unstable with the introduction of dispersal in space. Conversely, we show that Turing instabilities can occur more easily in complex ecosystems with many species than in the case of only a few species. Our work shows that adding more details to the model of May gives rise to more ways in which an equilibrium can become unstable. Making Mays simple model more realistic is therefore unlikely to remove the upper bound on complexity.
Observed bimodal tree cover distributions at particular environmental conditions and theoretical models indicate that some areas in the tropics can be in either of the alternative stable vegetation states forest or savanna. However, when including sp atial interaction in nonspatial differential equation models of a bistable quantity, only the state with the lowest potential energy remains stable. Our recent reaction-diffusion model of Amazonian tree cover confirmed this and was able to reproduce the observed spatial distribution of forest versus savanna satisfactorily when forced by heterogeneous environmental and anthropogenic variables, even though bistability was underestimated. These conclusions were solely based on simulation results. Here, we perform an analytical and numerical analysis of the model. We derive the Maxwell point (MP) of the homogeneous reaction-diffusion equation without savanna trees as a function of rainfall and human impact and show that the front between forest and nonforest settles at this point as long as savanna tree cover near the front remains sufficiently low. For parameters resulting in higher savanna tree cover near the front, we also find irregular forest-savanna cycles and woodland-savanna bistability, which can both explain the remaining observed bimodality.
Environmental changes greatly influence the evolution of populations. Here, we study the dynamics of a population of two strains, one growing slightly faster than the other, competing for resources in a time-varying binary environment modeled by a ca rrying capacity switching either randomly or periodically between states of abundance and scarcity. The population dynamics is characterized by demographic noise (birth and death events) coupled to a varying environment. We elucidate the similarities and differences of the evolution subject to a stochastically- and periodically-varying environment. Importantly, the population size distribution is generally found to be broader under intermediate and fast random switching than under periodic variations, which results in markedly different asymptotic behaviors between the fixation probability of random and periodic switching. We also determine the detailed conditions under which the fixation probability of the slow strain is maximal.
Evolutionary game theory has traditionally assumed that all individuals in a population interact with each other between reproduction events. We show that eliminating this restriction by explicitly considering the time scales of interaction and selec tion leads to dramatic changes in the outcome of evolution. Examples include the selection of the inefficient strategy in the Harmony and Stag-Hunt games, and the disappearance of the coexistence state in the Snowdrift game. Our results hold for any population size and in the presence of a background of fitness.
149 - Ohad Vilk , Michael Assaf 2018
In recent years non-demographic variability has been shown to greatly affect dynamics of stochastic populations. For example, non-demographic noise in the form of a bursty reproduction process with an a-priori unknown burst size, or environmental var iability in the form of time-varying reaction rates, have been separately found to dramatically impact the extinction risk of isolated populations. In this work we investigate the extinction risk of an isolated population under the combined influence of these two types of non-demographic variation. Using the so-called momentum-space WKB approach we arrive at a set of time-dependent Hamilton equations. In order to account for the explicit time dependence, we find the instanton of the time-perturbed Hamiltonian numerically, where analytical expressions are presented in particular limits using various perturbation techniques. We focus on two classes of time-varying environments: periodically-varying rates corresponding to seasonal effects, and a sudden decrease in the birth rate corresponding to a catastrophe. All our theoretical results are tested against numerical Monte Carlo simulations with time-dependent rates and also against a numerical solution of the corresponding time-dependent Hamilton equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا