ﻻ يوجد ملخص باللغة العربية
In his seminal work in the 1970s Robert May suggested that there was an upper limit to the number of species that could be sustained in stable equilibrium by an ecosystem. This deduction was at odds with both intuition and the observed complexity of many natural ecosystems. The so-called stability-diversity debate ensued, and the discussion about the factors making an ecosystem stable or unstable continues to this day. We show in this work that dispersal can be a destabilising influence. To do this, we combine ideas from Alan Turings work on pattern formation with Mays random-matrix approach. We demonstrate how a stable equilibrium in a complex ecosystem with two trophic levels can become unstable with the introduction of dispersal in space. Conversely, we show that Turing instabilities can occur more easily in complex ecosystems with many species than in the case of only a few species. Our work shows that adding more details to the model of May gives rise to more ways in which an equilibrium can become unstable. Making Mays simple model more realistic is therefore unlikely to remove the upper bound on complexity.
Forty years ago, Robert May questioned a central belief in ecology by proving that sufficiently large or complex ecological networks have probability of persisting close to zero. To prove this point, he analyzed large networks in which species intera
We use dynamical generating functionals to study the stability and size of communities evolving in Lotka-Volterra systems with random interaction coefficients. The size of the eco-system is not set from the beginning. Instead, we start from a set of
Dispersal-induced growth (DIG) occurs when two populations with time-varying growth rates, each of which, when isolated, would become extinct, are able to persist and grow exponentially when dispersal among the two populations is present. This work p
We introduce a model of traveling agents ({it e.g.} frugivorous animals) who feed on randomly located vegetation patches and disperse their seeds, thus modifying the spatial distribution of resources in the long term. It is assumed that the survival
Niche and neutral theory are two prevailing, yet much debated, ideas in ecology proposed to explain the patterns of biodiversity. Whereas niche theory emphasizes selective differences between species and interspecific interactions in shaping the comm