ترغب بنشر مسار تعليمي؟ اضغط هنا

New class of quantum deformations of D=4 Euclidean supersymmetry

216   0   0.0 ( 0 )
 نشر من قبل Andrzej Borowiec
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the class of deformations of simple Euclidean superalgebra, which describe the supersymmetrization of some Lie algebraic noncommutativity of D=4 Euclidean space-time. The presented deformations are generated by the supertwists. We provide new explicit formulae for a chosen twisted D=4 Euclidean Hopf superalgebra and describe the corresponding quantum covariant deformation of chiral Euclidean superspace.



قيم البحث

اقرأ أيضاً

193 - A. Borowiec 2008
We show how some classical r-matrices for the D=4 Poincare algebra can be supersymmetrized by an addition of part depending on odd supercharges. These r-matrices for D=4 super-Poincare algebra can be presented as a sum of the so-called subordinated r -matrices of super-Abelian and super-Jordanian type. Corresponding twists describing quantum deformations are obtained in an explicit form. These twists are the super-extensions of twists obtained in the paper arXiv:0712.3962.
We consider a superextension of the extended Jordanian twist, describing nonstandard quantization of anti-de-Sitter ($AdS$) superalgebra $osp(1|4)$ in the form of Hopf superalgebra. The super-Jordanian twisting function and corresponding basic coprod uct formulae for the generators of $osp(1|4)$ are given in explicit form. The nonlinear transformation of the classical superalgebra basis not modifying the defining algebraic relations but simplifying coproducts and antipodes is proposed. Our physical application is to interpret the new super-Jordanian deformation of $osp(1|4)$ superalgebra as deformed D=4 $AdS$ supersymmetries. Subsequently we perform suitable contraction of quantum Jordanian $AdS$ superalgebra and obtain new $kappa$-deformation of D=4 Poincare superalgebra, with the bosonic sector describing the light cone $kappa$-deformation of Poincare symmetries.
We present a large class of supersymmetric classical r-matrices, describing the supertwist deformations of Poincare and Euclidean superalgebras. We consider in detail new family of four supertwists of N=1 Poincare superalgebra and provide as well the ir Euclidean counterpart. The proposed supertwists are better adjusted to the description of deformed D=4 Euclidean supersymmetries with independent left-chiral and right-chiral supercharges. They lead to new quantum superspaces, obtained by the superextension of twist deformations of spacetime providing Lie-algebraic noncommutativity of space-time coordinates. In the Hopf-algebraic Euclidean SUSY framework the considered supertwist deformations provide an alternative to the N=1/2 SUSY Seibergs star product deformation scheme.
262 - A. Borowiec 2008
This paper together with the previous one (arXiv:hep-th/0604146) presents the detailed description of all quantum deformations of D=4 Lorentz algebra as Hopf algebra in terms of complex and real generators. We describe here in detail two quantum defo rmations of the D=4 Lorentz algebra o(3,1) obtained by twisting of the standard q-deformation U_{q}(o(3,1)). For the first twisted q-deformation an Abelian twist depending on Cartan generators of o(3,1) is used. The second example of twisting provides a quantum deformation of Cremmer-Gervais type for the Lorentz algebra. For completeness we describe also twisting of the Lorentz algebra by standard Jordanian twist. By twist quantization techniques we obtain for these deformations new explicit formulae for the deformed coproducts and antipodes of the o(3,1)-generators.
We construct firstly the complete list of five quantum deformations of $D=4$ complex homogeneous orthogonal Lie algebra $mathfrak{o}(4;mathbb{C})cong mathfrak{o}(3;mathbb{C})oplus mathfrak{o}(3;mathbb{C})$, describing quantum rotational symmetry of f our-dimensional complex space-time, in particular we provide the corresponding universal quantum $R$-matrices. Further applying four possible reality conditions we obtain all sixteen Hopf-algebraic quantum deformations for the real forms of $mathfrak{o}(4;mathbb{C})$: Euclidean $mathfrak{o}(4)$, Lorentz $mathfrak{o}(3,1)$, Kleinian $mathfrak{o}(2,2)$ and quaternionic $mathfrak{o}^{star}(4)$. For $mathfrak{o}(3,1)$ we only recall well-known results obtained previously by the authors, but for other real Lie algebras (Euclidean, Kleinian, quaternionic) as well as for the complex Lie algebra $mathfrak{o}(4;mathbb{C})$ we present new results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا