ترغب بنشر مسار تعليمي؟ اضغط هنا

N=4 mechanics, WDVV equations and roots

178   0   0.0 ( 0 )
 نشر من قبل Olaf Lechtenfeld
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

N=4 superconformal multi-particle quantum mechanics on the real line is governed by two prepotentials, U and F, which obey a system of partial differential equations linear in U and generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation for F. Putting U=0 yields a class of models (with zero central charge) which are encoded by the finite Coxeter root systems. We extend these WDVV solutions F in two ways: the A_n system is deformed n-parametrically to the edge set of a general orthocentric n-simplex, and the BCF-type systems form one-parameter families. A classification strategy is proposed. A nonzero central charge requires turning on U in a given F background, which we show is outside of reach of the standard root-system ansatz for indecomposable systems of more than three particles. In the three-body case, however, this ansatz can be generalized to establish a series of nontrivial models based on the dihedral groups I_2(p), which are permutation symmetric if 3 divides p. We explicitly present their full prepotentials.



قيم البحث

اقرأ أيضاً

We investigate integrability of Euler-Lagrange equations associated with 2D second-order Lagrangians of the form begin{equation*} int f(u_{xx},u_{xy},u_{yy}) dxdy. end{equation*} By deriving integrability conditions for the Lagrangian density $f$, ex amples of integrable Lagrangians expressible via elementary functions, Jacobi theta functions and dilogarithms are constructed. A link of second-order integrable Lagrangians to WDVV equations is established. Generalisations to 3D second-order integrable Lagrangians are also discussed.
We show that reductions of KP hierarchies related to the loop algebra of $SL_n$ with homogeneous gradation give solutions of the Darboux-Egoroff system of PDEs. Using explicit dressing matrices of the Riemann-Hilbert problem generalized to include a set of commuting additional symmetries, we construct solutions of the Witten--Dijkgraaf--E. Verlinde--H. Verlinde equations.
We consider the general $mathcal{N}{=},4,$ $d{=},3$ Galilean superalgebra with arbitrary central charges and study its dynamical realizations. Using the nonlinear realization techniques, we introduce a class of actions for $mathcal{N}{=},4$ three-dim ensional non-relativistic superparticle, such that they are linear in the central charge Maurer-Cartan one-forms. As a prerequisite to the quantization, we analyze the phase space constraints structure of our model for various choices of the central charges. The first class constraints generate gauge transformations, involving fermionic $kappa$-gauge transformations. The quantization of the model gives rise to the collection of free $mathcal{N}{=},4$, $d{=},3$ Galilean superfields, which can be further employed, e.g., for description of three-dimensional non-relativistic $mathcal{N}{=},4$ supersymmetric theories.
354 - R. Jackiw , S.-Y. Pi 2012
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even tho ugh the operators with which we work need not be primary and the states are not conformally invariant. We find that only one conformal block contributes to the four-point function. We describe some further properties of the states that we use and we construct dynamical evolution generated by the compact generator of SO(2.1).
We study supersymmetric sectors at half-BPS boundaries and interfaces in the 4d $mathcal{N}=4$ super Yang-Mills with the gauge group $G$, which are described by associative algebras equipped with twisted traces. Such data are in one-to-one correspond ence with an infinite set of defect correlation functions. We identify algebras and traces for known boundary conditions. Ward identities expressing the (twisted) periodicity of the trace highly constrain its structure, in many cases allowing for the complete solution. Our main examples in this paper are: the universal enveloping algebra $U(mathfrak{g})$ with the trace describing the Dirichlet boundary conditions; and the finite W-algebra $mathcal{W}(mathfrak{g},t_+)$ with the trace describing the Nahm pole boundary conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا