ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Self-Assembly of Asymmetric Amphiphatic Spherical Colloidal Particles

149   0   0.0 ( 0 )
 نشر من قبل William Miller III
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From dumbbells to FCC crystals, we study the self-assembly pathway of amphiphatic, spherical colloidal particles as a function of the size of the hydrophobic region using molecular dynamics simulations. Specifically, we analyze how local inter-particle interactions correlate to the final self-assembled aggregate and how they affect the dynamical pathway of structure formation. We present a detailed diagram separating the many phases that we find for different sizes of the hydrophobic area, and uncover a narrow region where particles self-assemble into hollow, faceted cages that could potentially find interesting engineering applications.



قيم البحث

اقرأ أيضاً

We investigate the structure of a dilute mixture of amphiphilic dimers and spherical particles, a model relevant to the problem of encapsulating globular guest molecules in a dispersion. Dimers and spheres are taken to be hard particles, with an addi tional attraction between spheres and the smaller monomers in a dimer. Using Monte Carlo simulation, we document the low-temperature formation of aggregates of guests (clusters) held together by dimers, whose typical size and shape depend on the guest concentration $chi$. For low $chi$ (less than $10%$), most guests are isolated and coated with a layer of dimers. As $chi$ progressively increases, clusters grow in size becoming more and more elongated and polydisperse; after reaching a shallow maximum for $chiapprox 50%$, the size of clusters again reduces upon increasing $chi$ further. In one case only ($chi=50%$ and moderately low temperature) the mixture relaxed to a fluid of lamellae, suggesting that in this case clusters are metastable with respect to crystal-vapor separation. On heating, clusters shrink until eventually the system becomes homogeneous on all scales. On the other hand, as the mixture is made denser and denser at low temperature, clusters get increasingly larger until a percolating network is formed.
We outline a basic strategy of how self-propulsion can be used to improve the yield of a typical colloidal self-assembly process. The success of this approach is predicated on the thoughtful design of the colloidal building block as well as how self- propulsion is endowed to the particle. As long as a set of criteria are satisfied, it is possible to significantly increase the rate of self-assembly, and greatly expand the window in parameter space where self-assembly can occur. In addition, we show that by tuning the relative on/off time of the self-propelling force it is possible to modulate the effective speed of the colloids allowing for further optimization of the self-assembly process.
DNA is an ideal candidate to organize matter on the nanoscale, primarily due to the specificity and complexity of DNA based interactions. Recent advances in this direction include the self-assembly of colloidal crystals using DNA grafted particles. I n this article we theoretically study the self-assembly of DNA-caged particles. These nanoblocks combine DNA grafted particles with more complicated purely DNA based constructs. Geometrically the nanoblock is a sphere (DNA grafted particle) inscribed inside a polyhedron (DNA cage). The faces of the DNA cage are open, and the edges are made from double stranded DNA. The cage vertices are modified DNA junctions. We calculate the equilibriuim yield of self-assembled, tetrahedrally caged particles, and discuss their stability with respect to alternative structures. The experimental feasability of the method is discussed. To conclude we indicate the usefulness of DNA-caged particles as nanoblocks in a hierarchical self-assembly strategy.
In this review we discuss recent advances in the self-assembly of self-propelled colloidal particles and highlight some of the most exciting results in this field with a specific focus on dry active matter. We explore this phenomenology through the l ens of the complexity of the colloidal building blocks. We begin by considering the behavior of isotropic spherical particles. We then discuss the case of amphiphilic and dipolar Janus particles. Finally, we show how the geometry of the colloids and/or the directionality of their interactions can be used to control the physical properties of the assembled active aggregates, and suggest possible strategies on how to exploit activity as a tunable driving force for self-assembly. The unique properties of active colloids lend promise for the design of the next generation of functional, environment-sensing microstructures able to perform specific tasks in an autonomous and targeted manner.
In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of t he active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا