ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-assembly of active amphiphilic Janus particles

98   0   0.0 ( 0 )
 نشر من قبل Chantal Valeriani
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.

قيم البحث

اقرأ أيضاً

The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphi philic molecules can induce self-assembly below 0{deg}C.
Crystals melt when thermal excitations or the concentration of defects in the lattice is sufficiently high. Upon melting, the crystalline long-range order vanishes, turning the solid to a fluid. In contrast to this classical scenario of solid melting , here we demonstrate a counter-intuitive behavior of the occurrence of crystalline long-range order in an initially disordered matrix. This unusual solidification is demonstrated in a system of passive colloidal particles accommodating chemically active defects -- photocatalytic Janus particles. The observed crystallization occurs when the amount of active-defect-induced fluctuations (which is the measure of the effective temperature) reaches critical value. The driving mechanism behind this unusual behavior is purely internal and resembles a blast-induced solidification. Here the role of internal micro-blasts is played by the photochemical activity of defects residing in the colloidal matrix. The defect-induced solidification occurs under non-equilibrium conditions: the resulting solid exists as long as a constant supply of energy in the form of ion flow is provided by the catalytic photochemical reaction at the surface of active Janus particle defects. Our findings could be useful for understanding of the phase transitions of matter under extreme conditions far from thermodynamic equilibrium.
We outline a basic strategy of how self-propulsion can be used to improve the yield of a typical colloidal self-assembly process. The success of this approach is predicated on the thoughtful design of the colloidal building block as well as how self- propulsion is endowed to the particle. As long as a set of criteria are satisfied, it is possible to significantly increase the rate of self-assembly, and greatly expand the window in parameter space where self-assembly can occur. In addition, we show that by tuning the relative on/off time of the self-propelling force it is possible to modulate the effective speed of the colloids allowing for further optimization of the self-assembly process.
We investigate the phase behavior and kinetics of a monodisperse mixture of active (textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the active component triggers phase separation into a dense and a dilute phase; in the dense phase we further find active-passive segregation, with rafts of passive particles in a sea of active particles. We find that phase separation from an initially disordered mixture can occur with as little as 15 percent of the particles being active. Finally, we show that a system prepared in a suitable fully segregated initial state reproducibly self-assembles an active corona which triggers crystallization of the passive core by initiating a compression wave. Our findings are relevant to the experimental pursuit of directed self-assembly using active particles.
Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics - a feature they share with all living systems. The incoherent behaviour of individual swimmers can then be ha rnessed (or rectified) by microfluidic devices that create systematic motions impossible in equilibrium. Examples include flow of rotor particles round a circuit, steady rotation of a gear wheel in a bacterial bath, and pumping of bacteria between chambers by funnel gates. Here we present a computational proof-of-concept study, showing that such active rectification devices might be created directly from an unstructured primordial soup of motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion causing a collisional slow-down at high density. These four factors create a many-body rectification mechanism that generically differs from one-body microfluidic antecedents. Our work suggests that standard spatial-light-modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا