ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-assembling DNA-caged particles: nanoblocks for hierarchical self-assembly

179   0   0.0 ( 0 )
 نشر من قبل Nicholas Licata
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

DNA is an ideal candidate to organize matter on the nanoscale, primarily due to the specificity and complexity of DNA based interactions. Recent advances in this direction include the self-assembly of colloidal crystals using DNA grafted particles. In this article we theoretically study the self-assembly of DNA-caged particles. These nanoblocks combine DNA grafted particles with more complicated purely DNA based constructs. Geometrically the nanoblock is a sphere (DNA grafted particle) inscribed inside a polyhedron (DNA cage). The faces of the DNA cage are open, and the edges are made from double stranded DNA. The cage vertices are modified DNA junctions. We calculate the equilibriuim yield of self-assembled, tetrahedrally caged particles, and discuss their stability with respect to alternative structures. The experimental feasability of the method is discussed. To conclude we indicate the usefulness of DNA-caged particles as nanoblocks in a hierarchical self-assembly strategy.



قيم البحث

اقرأ أيضاً

In recent years there have been a number of proposals to utilize the specificity of DNA based interactions for potential applications in nanoscience. One interesting direction is the self-assembly of micro- and nanoparticle clusters using DNA scaffol ds. In this letter we consider a DNA scaffold method to self-assemble clusters of colored particles. Stable clusters of microspheres have recently been produced by an entirely different method. Our DNA based approach self-assembles clusters with additional degrees of freedom associated with particle permutation. We demonstrate that in the non-equilibrium regime of irreversible binding the self-assembly process is experimentally feasible. These color degrees of freedom may allow for more diverse intercluster interactions essential for hierarchical self-assembly of larger structures.
Electrostatic interactions play an important role in numerous self-assembly phenomena, including colloidal aggregation. Although colloids typically have a dielectric constant that differs from the surrounding solvent, the effective interactions that arise from inhomogeneous polarization charge distributions are generally neglected in theoretical and computational studies. We introduce an efficient technique to resolve polarization charges in dynamical dielectric geometries, and demonstrate that dielectric effects emph{qualitatively} alter the predicted self-assembled structures, with surprising colloidal strings arising from many-body effects.
Active systems contain self-propelled particles and can spontaneously self-organize into patterns making them attractive candidates for the self-assembly of smart soft materials. One key limitation of our present understanding of these materials hing es on the complexity of the microscopic mechanisms driving its components forward. Here, by combining experiments, analytical theory and simulations we explore such a mechanism for a class of active system, modular microswimmers, which self-assemble from colloids and ion-exchange resins on charged substrates. Our results unveil the self-assembly processes and the working mechanism of the ion-exchange driven motors underlying modular microswimmers, which have so far been illusive, even qualitatively. We apply these motors to show that modular microswimmers can circumvent corners in complex environments and move uphill. Our work closes a central knowledge gap in modular microswimmers and provides a facile route to extract mechanical energy from ion-exchange processes.
From dumbbells to FCC crystals, we study the self-assembly pathway of amphiphatic, spherical colloidal particles as a function of the size of the hydrophobic region using molecular dynamics simulations. Specifically, we analyze how local inter-partic le interactions correlate to the final self-assembled aggregate and how they affect the dynamical pathway of structure formation. We present a detailed diagram separating the many phases that we find for different sizes of the hydrophobic area, and uncover a narrow region where particles self-assemble into hollow, faceted cages that could potentially find interesting engineering applications.
The protein shells, or capsids, of all sphere-like viruses adopt icosahedral symmetry. In the present paper we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids cons tructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا