ﻻ يوجد ملخص باللغة العربية
In this review we discuss recent advances in the self-assembly of self-propelled colloidal particles and highlight some of the most exciting results in this field with a specific focus on dry active matter. We explore this phenomenology through the lens of the complexity of the colloidal building blocks. We begin by considering the behavior of isotropic spherical particles. We then discuss the case of amphiphilic and dipolar Janus particles. Finally, we show how the geometry of the colloids and/or the directionality of their interactions can be used to control the physical properties of the assembled active aggregates, and suggest possible strategies on how to exploit activity as a tunable driving force for self-assembly. The unique properties of active colloids lend promise for the design of the next generation of functional, environment-sensing microstructures able to perform specific tasks in an autonomous and targeted manner.
We outline a basic strategy of how self-propulsion can be used to improve the yield of a typical colloidal self-assembly process. The success of this approach is predicated on the thoughtful design of the colloidal building block as well as how self-
From dumbbells to FCC crystals, we study the self-assembly pathway of amphiphatic, spherical colloidal particles as a function of the size of the hydrophobic region using molecular dynamics simulations. Specifically, we analyze how local inter-partic
Electrostatic interactions play an important role in numerous self-assembly phenomena, including colloidal aggregation. Although colloids typically have a dielectric constant that differs from the surrounding solvent, the effective interactions that
We report small-angle x-ray scattering (SAXS) experiments on aqueous dispersions of colloidal silica with a broad monomodal size distribution (polydispersity 18%, size 8 nm). Over a range of volume fractions the silica particles segregate to build fi
Particles with directional interactions are promising building blocks for new functional materials and may serve as models for biological structures. Mutually attractive nanoparticles that are deformable due to flexible surface groups, for example, m