ﻻ يوجد ملخص باللغة العربية
(Abridged) We present new optical and near-infrared imaging for a sample of 98 spectroscopically-selected galaxy groups at 0.25<z<0.55. We measure accurate colours for group members and the surrounding field population, statistically complete above a stellar mass limit of M=1E10 Msun. The overall colour distribution is bimodal in both the field and group samples; but at fixed luminosity the fraction of group galaxies populating the red peak is larger, by 20+/-7 per cent, than that of the field. In particular, group members with early-type morphologies, as identified in HST imaging, exhibit a tight red sequence, similar to that seen for more massive clusters. We show that approximately 20-30 per cent of galaxies on the red sequence may be dust-reddened galaxies with non-negligible star formation and early-spiral morphologies. This is true of both the field and group sample, and shows little dependence on near infrared luminosity. Thus, the fraction of bright group members with no sign of star formation or AGN activity is 54+/-6 per cent. Our field sample, which includes galaxies in all environments, contains 35+/-3 per cent of such inactive galaxies, consistent with the amount expected if all such galaxies are located in groups and clusters. This reinforces our earlier conclusions, that dense environments at z<0.5 are associated with a premature cessation of star formation in some galaxies; in particular we find no evidence for significantly enhanced star formation in these environments. Simple galaxy formation models predict a quenching of star formation in groups that is too efficient, overpopulating the red sequence. Attempts to fix this by increasing the timescale of this quenching equally for all group members distorts the colour distribution in a way that is inconsistent with observations.
We study the colour-magnitude relation (CMR) for a sample of 172 morphologically-classified E/S0 cluster galaxies from the ESO Distant Cluster Survey (EDisCS) at 0.4<z<0.8. The intrinsic colour scatter about the CMR is very small (0.076) in rest-fram
Evolution of galaxies is one of the most actual topics in astrophysics. Among the most important factors determining the evolution are two galactic components which are difficult or even impossible to detect optically: the gaseous disks and the dark
Although the optical colour-magnitude diagram of galaxies allows one to select red sequence objects, neither can it be used for galaxy classification without additional observational data such as spectra or high-resolution images, nor to identify blu
We present the results of a study investigating the rest-frame ultra-violet (UV) spectral slopes of redshift z~5 Lyman-break galaxies (LBGs). By combining deep Hubble Space Telescope imaging of the CANDELS and HUDF fields with ground-based imaging fr
We analyze the angular clustering of z~2.3 distant red galaxies (DRGs) measured by Quadri et al 2008. We find that, with robust estimates of the measurement errors and realistic halo occupation distribution modeling, the measured clustering can be we