ترغب بنشر مسار تعليمي؟ اضغط هنا

The colour distribution of galaxies at redshift five

366   0   0.0 ( 0 )
 نشر من قبل Alexander Rogers
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a study investigating the rest-frame ultra-violet (UV) spectral slopes of redshift z~5 Lyman-break galaxies (LBGs). By combining deep Hubble Space Telescope imaging of the CANDELS and HUDF fields with ground-based imaging from the UKIDSS Ultra Deep Survey (UDS), we have produced a large sample of z~5 LBGs spanning an unprecedented factor of >100 in UV luminosity. Based on this sample we find a clear colour-magnitude relation (CMR) at z~5, such that the rest-frame UV slopes (beta) of brighter galaxies are notably redder than their fainter counterparts. We determine that the z~5 CMR is well described by a linear relationship of the form: d beta = (-0.12 +/- 0.02) d Muv, with no clear evidence for a change in CMR slope at faint magnitudes (i.e. Muv > -18.9). Using the results of detailed simulations we are able, for the first time, to infer the intrinsic (i.e. free from noise) variation of galaxy colours around the CMR at z~5. We find significant (12 sigma) evidence for intrinsic colour variation in the sample as a whole. Our results also demonstrate that the width of the intrinsic UV slope distribution of z~5 galaxies increases from Delta(beta)=0.1 at Muv=-18 to Delta(beta)=0.4 at Muv=-21. We suggest that the increasing width of the intrinsic galaxy colour distribution and the CMR itself are both plausibly explained by a luminosity independent lower limit of beta=-2.1, combined with an increase in the fraction of red galaxies in brighter UV-luminosity bins.



قيم البحث

اقرأ أيضاً

Using data drawn from the DEEP2 and DEEP3 Galaxy Redshift Surveys, we investigate the relationship between the environment and the structure of galaxies residing on the red sequence at intermediate redshift. Within the massive (10 < log(M*/Msun) < 11 ) early-type population at 0.4 < z <1.2, we find a significant correlation between local galaxy overdensity (or environment) and galaxy size, such that early-type systems in higher-density regions tend to have larger effective radii (by ~0.5 kpc or 25% larger) than their counterparts of equal stellar mass and Sersic index in lower-density environments. This observed size-density relation is consistent with a model of galaxy formation in which the evolution of early-type systems at z < 2 is accelerated in high-density environments such as groups and clusters and in which dry, minor mergers (versus mechanisms such as quasar feedback) play a central role in the structural evolution of the massive, early-type galaxy population.
115 - Hidenobu Yajima 2011
The Lya emission has been observed from galaxies over a redshift span z ~ 0 - 8.6. However, the evolution of high-redshift Lya emitters (LAEs), and the link between these populations and local galaxies, remain poorly understood. Here, we investigate the Lya properties of progenitors of a local L* galaxy by combining cosmological hydrodynamic simulations with three-dimensional radiative transfer calculations using the new ART^2 code. We find that the main progenitor (the most massive one) of a Milky Way-like galaxy has a number of Lya properties close to those of observed LAEs at z ~ 2 - 6, but most of the fainter ones appear to fall below the detection limits of current surveys. The Lya photon escape fraction depends sensitively on a number of physical properties of the galaxy, such as mass, star formation rate, and metallicity, as well as galaxy morphology and orientation. Moreover, we find that high-redshift LAEs show blue-shifted Lya line profiles characteristic of gas inflow, and that the Lya emission by excitation cooling increases with redshift, and becomes dominant at z > 6. Our results suggest that some observed LAEs at z ~ 2-6 with luminosity of L_Lya ~ 10^{42-43} ergs/s may be similar to the main progenitor of the Milky Way at high redshift, and that they may evolve into present-day L* galaxies.
158 - Ignacio Ferreras 2009
Using HST/ACS slitless grism spectra from the PEARS program, we study the stellar populations of morphologically selected early-type galaxies in the GOODS North and South fields. The sample - extracted from a visual classification of the (v2.0) HST/A CS images and restricted to redshifts z>0.4 - comprises 228 galaxies (F775W<24 ABmag) out to z~1.3 over 320 arcmin2, with a median redshift zM=0.75. This work significantly increases our previous sample from the GRAPES survey in the HUDF (18 galaxies over ~11 arcmin2; Pasquali et al. 2006b). The grism data allow us to separate the sample into `red and `blue spectra, with the latter comprising 15% of the total. Three different grids of models parameterising the star formation history are used to fit the low-resolution spectra. Over the redshift range of the sample - corresponding to a cosmic age between 5 and 10 Gyr - we find a strong correlation between stellar mass and average age, whereas the **spread** of ages (defined by the RMS of the distribution) is roughly ~1 Gyr and independent of stellar mass. The best-fit parameters suggest it is formation epoch and not formation timescale, that best correlates with mass in early-type galaxies. This result - along with the recently observed lack of evolution of the number density of massive galaxies - motivates the need for a channel of (massive) galaxy formation bypassing any phase in the blue cloud, as suggested by the simulations of Dekel et al. (2009).
We discuss the host galaxy metallicity distribution of all long gamma-ray bursts (GRBs) whose redshifts are known to be $< 0.4$, including newly obtained spectroscopic datasets of the host galaxies of GRB 060614, 090417B, and 130427A. We compare the metallicity distribution of the low-redshift sample to the model predictions, and constrain the relation between metallicity and GRB occurrence. We take account of spatial variation of metallicities among star forming regions within a galaxy. We found that the models, in which only low-metallicity stars produce GRBs with a sharp cutoff of GRB production efficiency around 12+log(O/H) $sim$ 8.3, can well reproduce the observed distribution, while the models with no metallicity dependence are not consistent with the observations. We also discuss possible sampling biases we may suffer by collecting long GRBs whose redshifts are known, presenting the photometric observations of the host galaxy of GRB 111225A at $z = 0.297$ whose redshift has been undetermined until $sim$ 2.3 years after the burst.
Although the optical colour-magnitude diagram of galaxies allows one to select red sequence objects, neither can it be used for galaxy classification without additional observational data such as spectra or high-resolution images, nor to identify blu e galaxies at unknown redshifts. We show that adding the near ultraviolet colour to the optical CMD reveals a tight relation in the three-dimensional colour-colour-magnitude space smoothly continuing from the blue cloud to the red sequence. We found that 98 per cent of 225,000 low-redshift (Z<0.27) galaxies follow a smooth surface g-r=F(M,NUV-r) with a standard deviation of 0.03-0.07 mag making it the tightest known galaxy photometric relation. There is a strong correlation between morphological types and integrated NUV-r colours. Rare galaxy classes such as E+A or tidally stripped systems become outliers that occupy distinct regions in the 3D parameter space. Using stellar population models for galaxies with different SFHs, we show that (a) the (NUV-r, g-r) distribution is formed by objects having constant and exponentially declining SFR with different characteristic timescales; (b) colour evolution for exponentially declining models goes along the relation suggesting its weak evolution up-to a redshift of 0.9; (c) galaxies with truncated SFHs have very short transition phase offset from the relation thus explaining the rareness of E+A galaxies. This relation can be used as a powerful galaxy classification tool when morphology remains unresolved. Its mathematical consequence is the photometric redshift estimates from 3 broad-band photometric points. This approach works better than most existing photometric redshift techniques applied to multi-colour datasets. Therefore, the relation can be used as an efficient selection technique for galaxies at intermediate redshifts (0.3<Z<0.8) using optical imaging surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا