ﻻ يوجد ملخص باللغة العربية
We analyze the angular clustering of z~2.3 distant red galaxies (DRGs) measured by Quadri et al 2008. We find that, with robust estimates of the measurement errors and realistic halo occupation distribution modeling, the measured clustering can be well fit within standard halo occupation models, in contrast to previous results. However, in order to fit the strong break in w(theta) at theta=10 arcsec, nearly all satellite galaxies in the DRG luminosity range are required to be DRGs. Within this luminosity-threshold sample, the fraction of galaxies that are DRGs is ~44%, implying that the formation of DRGs is more efficient for satellite galaxies than for central galaxies. Despite the evolved stellar populations contained within DRGs at z=2.3, 90% of satellite galaxies in the DRG luminosity range have been accreted within 500 Myr. Thus, satellite DRGs must have known they would become satellites well before the time of their accretion. This implies that the formation of DRGs correlates with large-scale environment at fixed halo mass, although the large-scale bias of DRGs can be well fit without such assumptions. Further data are required to resolve this issue. Using the observational estimate that ~30% of DRGs have no ongoing star formation, we infer a timescale for star formation quenching for satellite galaxies of 450 Myr, although the uncertainty on this number is large. However, unless all non-star forming satellite DRGs were quenched before accretion, the quenching timescale is significantly shorter than z~0 estimates. Down to the completeness limit of the Quadri et al sample, we find that the halo masses of central DRGs are ~50% higher than non-DRGs in the same luminosity range, but at the highest halo masses the central galaxies are DRGs only ~2/3 of the time.
We present optical spectroscopic follow-up of a sample of Distant Red Galaxies (DRGs) with K < 22.5 (Vega), selected by J-K > 2.3, in the Hubble Deep Field South, the MS 1054-03 field, and the Chandra Deep Field South. Spectroscopic redshifts were ob
We propose the Apparent Shrinking Criterion (ASC) to interpret the spatial extent, R_w, of transmitted flux windows in the absorption spectra of high-z quasars. The ASC can discriminate between the two regimes in which R_w corresponds either to the p
We present measurements of the redshift-dependent clustering of a DESI-like luminous red galaxy (LRG) sample selected from the Legacy Survey imaging dataset, and use the halo occupation distribution (HOD) framework to fit the clustering signal. The p
Recent studies have shown that distant red galaxies (DRGs), which dominate the high-mass end of the galaxy population at z~2.5, are more strongly clustered than the population of blue star-forming galaxies at similar redshifts. However these studies
We present a clustering analysis of Luminous Red Galaxies in SDSS Stripe 82. We study the angular 2-point correlation function, of 130,000 LRG candidates via colour-cut selections in izK with the K band coverage coming from UKIDSS LAS. We have used t