ﻻ يوجد ملخص باللغة العربية
Although the optical colour-magnitude diagram of galaxies allows one to select red sequence objects, neither can it be used for galaxy classification without additional observational data such as spectra or high-resolution images, nor to identify blue galaxies at unknown redshifts. We show that adding the near ultraviolet colour to the optical CMD reveals a tight relation in the three-dimensional colour-colour-magnitude space smoothly continuing from the blue cloud to the red sequence. We found that 98 per cent of 225,000 low-redshift (Z<0.27) galaxies follow a smooth surface g-r=F(M,NUV-r) with a standard deviation of 0.03-0.07 mag making it the tightest known galaxy photometric relation. There is a strong correlation between morphological types and integrated NUV-r colours. Rare galaxy classes such as E+A or tidally stripped systems become outliers that occupy distinct regions in the 3D parameter space. Using stellar population models for galaxies with different SFHs, we show that (a) the (NUV-r, g-r) distribution is formed by objects having constant and exponentially declining SFR with different characteristic timescales; (b) colour evolution for exponentially declining models goes along the relation suggesting its weak evolution up-to a redshift of 0.9; (c) galaxies with truncated SFHs have very short transition phase offset from the relation thus explaining the rareness of E+A galaxies. This relation can be used as a powerful galaxy classification tool when morphology remains unresolved. Its mathematical consequence is the photometric redshift estimates from 3 broad-band photometric points. This approach works better than most existing photometric redshift techniques applied to multi-colour datasets. Therefore, the relation can be used as an efficient selection technique for galaxies at intermediate redshifts (0.3<Z<0.8) using optical imaging surveys.
We investigate the development of the red sequence (RS) of cluster galaxies by using a semi-analytic model of galaxy formation. Results show good agreement between the general trend of the simulated RS and the observed relation in early-type galaxies
We use ground-based and space-based eclipse measurements for the near-infrared ($JHK!s$) bands and Spitzer 3.6 $mu$m and 4.5 $mu$m bands to construct colour-colour and colour-magnitude diagrams for hot Jupiters. We compare the results with previous o
We investigate the origin of the colour-magnitude relation (CMR) followed by early-type cluster galaxies by using a combination of cosmological N-body simulations of cluster of galaxies and a semi-analytic model of galaxy formation (Lagos, Cora & Pad
We investigate the development of the colour-magnitude re- lation (CMR) of cluster galaxies. This study is carried out using a semi- analytic model of galaxy formation and evolution coupled to a sample of simulated galaxy clusters of different masses
We study the colour-magnitude relation (CMR) for a sample of 172 morphologically-classified E/S0 cluster galaxies from the ESO Distant Cluster Survey (EDisCS) at 0.4<z<0.8. The intrinsic colour scatter about the CMR is very small (0.076) in rest-fram