ﻻ يوجد ملخص باللغة العربية
Zolotarev proved a duality result that relates stable densities with different indices. In this paper, we show how Zolotarev duality leads to some interesting results on fractional diffusion. Fractional diffusion equations employ fractional derivatives in place of the usual integer order derivatives. They govern scaling limits of random walk models, with power law jumps leading to fractional derivatives in space, and power law waiting times between the jumps leading to fractional derivatives in time. The limit process is a stable Levy motion that models the jumps, subordinated to an inverse stable process that models the waiting times. Using duality, we relate the density of a spectrally negative stable process with index $1<alpha<2$ to the density of the hitting time of a stable subordinator with index $1/alpha$, and thereby unify some recent results in the literature. These results also provide a concrete interpretation of Zolotarev duality in terms of the fractional diffusion model.
This paper establishes explicit solutions for fractional diffusion problems on bounded domains. It also gives stochastic solutions, in terms of Markov processes time-changed by an inverse stable subordinator whose index equals the order of the fracti
Super-diffusion, characterized by a spreading rate $t^{1/alpha}$ of the probability density function $p(x,t) = t^{-1/alpha} p left( t^{-1/alpha} x , 1 right)$, where $t$ is time, may be modeled by space-fractional diffusion equations with order $1 <
We study the inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion with Hurst index $Hin(0,1)$. With the aid of a novel estimate, by using the operator approach we propose regularity analy
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. The fundamental solution (for the {Cauchy} probl
We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the di