ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete random walk models for space-time fractional diffusion

326   0   0.0 ( 0 )
 نشر من قبل Francesco Mainardi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. The fundamental solution (for the {Cauchy} problem) of the fractional diffusion equations can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to a given fractional diffusion equation.

قيم البحث

اقرأ أيضاً

71 - F. Le Vot , E. Abad , S. B. Yuste 2017
Expanding media are typical in many different fields, e.g. in Biology and Cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties. Here, we focus on such effects when the diffusion process is described by the Continuous Time Random Walk (CTRW) model. For the case where the jump length and the waiting time probability density functions (pdfs) are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Levy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Greens function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. For a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This Big Crunch effect stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model. In the case of an exponential expansion, exact recurrence relations for the Laplace-transformed moments are obtained. Our results confirm the intuitive expectation that the medium expansion hinders the mixing of diffusive particles occupying separate regions. In the case of Levy flights, we quantify this effect by means of the so-called Levy horizon.
Super-diffusion, characterized by a spreading rate $t^{1/alpha}$ of the probability density function $p(x,t) = t^{-1/alpha} p left( t^{-1/alpha} x , 1 right)$, where $t$ is time, may be modeled by space-fractional diffusion equations with order $1 < alpha < 2$. Some applications in biophysics (calcium spark diffusion), image processing, and computational fluid dynamics utilize integer-order and fractional-order exponents beyond than this range ($alpha > 2$), known as high-order diffusion, or hyperdiffusion. Recently, space-time duality, motivated by Zolotarevs duality law for stable densities, established a link between time-fractional and space-fractional diffusion for $1 < alpha leq 2$. This paper extends space-time duality to fractional exponents $1<alpha leq 3$, and several applications are presented. In particular, it will be shown that space-fractional diffusion equations with order $2<alpha leq 3$ model sub-diffusion and have a stochastic interpretation. A space-time duality for tempered fractional equations, which models transient anomalous diffusion, is also developed.
We introduce a class of integrable dynamical systems of interacting classical matrix-valued fields propagating on a discrete space-time lattice, realized as many-body circuits built from elementary symplectic two-body maps. The models provide an effi cient integrable Trotterization of non-relativistic $sigma$-models with complex Grassmannian manifolds as target spaces, including, as special cases, the higher-rank analogues of the Landau-Lifshitz field theory on complex projective spaces. As an application, we study transport of Noether charges in canonical local equilibrium states. We find a clear signature of superdiffusive behavior in the Kardar-Parisi-Zhang universality class, irrespectively of the chosen underlying global unitary symmetry group and the quotient structure of the compact phase space, providing a strong indication of superuniversal physics.
Levy walks define a fundamental concept in random walk theory which allows one to model diffusive spreading that is faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion e quation for an n-dimensional correlated Levy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short range auto-correlated Levy walks in the large time limit, and solve it. Our derivation discloses different dynamical mechanisms leading to correlated Levy walk diffusion in terms of quantities that can be measured experimentally.
We present a numerical method for the Monte Carlo simulation of uncoupled continuous-time random walks with a Levy alpha-stable distribution of jumps in space and a Mittag-Leffler distribution of waiting times, and apply it to the stochastic solution of the Cauchy problem for a partial differential equation with fractional derivatives both in space and in time. The one-parameter Mittag-Leffler function is the natural survival probability leading to time-fractional diffusion equations. Transformation methods for Mittag-Leffler random variables were found later than the well-known transformation method by Chambers, Mallows, and Stuck for Levy alpha-stable random variables and so far have not received as much attention; nor have they been used together with the latter in spite of their mathematical relationship due to the geometric stability of the Mittag-Leffler distribution. Combining the two methods, we obtain an accurate approximation of space- and time-fractional diffusion processes almost as easy and fast to compute as for standard diffusion processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا