ﻻ يوجد ملخص باللغة العربية
This paper establishes explicit solutions for fractional diffusion problems on bounded domains. It also gives stochastic solutions, in terms of Markov processes time-changed by an inverse stable subordinator whose index equals the order of the fractional time derivative. Some applications are given, to demonstrate how to specify a well-posed Dirichlet problem for space-time fractional diffusions in one or several variables. This solves an open problem in numerical analysis.
Zolotarev proved a duality result that relates stable densities with different indices. In this paper, we show how Zolotarev duality leads to some interesting results on fractional diffusion. Fractional diffusion equations employ fractional derivativ
We give a direct proof of the sharp two-sided estimates, recently established in [4,9], for the Dirichlet heat kernel of the fractional Laplacian with gradient perturbation in $C^{1, 1}$ open sets by using Duhamel formula. We also obtain a gradient e
We prove a stochastic representation formula for the viscosity solution of Dirichlet terminal-boundary value problem for a degenerate Hamilton-Jacobi-Bellman integro-partial differential equation in a bounded domain. We show that the unique viscosity
In the context of a metric measure Dirichlet space satisfying volume doubling and Poincare inequality, we prove the parabolic Harnack inequality for weak solutions of the heat equation associated with local nonsymmetric bilinear forms. In particular,
The stiff problem is concerned with a thermal conduction model with a singular barrier of zero volume. In this paper, we shall build the phase transitions for the stiff problems in one-dimensional space. It turns out that every phase transition defin