ﻻ يوجد ملخص باللغة العربية
We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well chosen sequence of approximating birth-and-death Markov chains, allowing for simultaneous numerical simulations of our primal and dual diffusion processes. Lastly, we show how our new definition of diffusion duality allows the spectral theory of cutoff phenomena to extend naturally from birth-and-death Markov chains to the present diffusion context.
Zolotarev proved a duality result that relates stable densities with different indices. In this paper, we show how Zolotarev duality leads to some interesting results on fractional diffusion. Fractional diffusion equations employ fractional derivativ
A weighted U-statistic based on a random sample X_1,...,X_n has the form U_n=sum_{1le i,jle n}w_{i-j}K(X_i,X_j), where K is a fixed symmetric measurable function and the w_i are symmetric weights. A large class of statistics can be expressed as weigh
We consider a real-valued diffusion process with a linear jump term driven by a Poisson point process and we assume that the jump amplitudes have a centered density with finite moments. We show upper and lower estimates for the density of the solutio
We analyze a class of energy and wealth redistribution models. We characterize their stationary measures and show that they have a discrete dual process. In particular we show that the wealth distribution model with non-zero propensity can never have
The Gartner-Ellis condition for the square of an asymptotically stationary Gaussian process is established. The same limit holds for the conditional distri-bution given any fixed initial point, which entails weak multiplicative ergodicity. The limit