ﻻ يوجد ملخص باللغة العربية
To take existing quantum optical experiments and devices into more practical regimes requires the construction of robust, solid-state implementations. In particular, to observe the strong-coupling regime of atom-photon interactions requires very small cavities and large quality factors. Here we show that the slot-waveguide geometry recently introduced for photonic applications is also promising for quantum optical applications in the visible regime. We study diamond- and GaP-based slot-waveguide cavities (SWCs) compatible with diamond colour centres e.g. nitrogen-vacancy (NV) defect, and show that one can achieve increased single-photon Rabi frequencies of order O(10^11) Hz in ultra-small cavity modal volumes, nearly 2 orders of magnitude smaller than previously studied diamond-based photonic crystal cavities.
By offering effective modal volumes significantly less than a cubic wavelength, slot-waveguide cavities offer a new in-road into strong atom-photon coupling in the visible regime. Here we explore two-dimensional arrays of coupled slot cavities which
We develop a theory for the interaction of multi-level atoms with multi-mode cavities yielding cavity-enhanced multi-photon resonances. The locations of the resonances are predicted from the use of effective two- and three-level Hamiltonians. As an a
Nitrogen vacancy (NV) centers in diamond have distinct promise as solid-state qubits. This is because of their large dipole moment, convenient level structure and very long room-temperature coherence times. In general, a combination of ion irradiatio
Quantum information offers the promise of being able to perform certain communication and computation tasks that cannot be done with conventional information technology (IT). Optical Quantum Information Processing (QIP) holds particular appeal, since
By popular request we post these old (from 2001) lecture notes of the Varenna Summer School Proceedings. The original was published as J. I. Cirac, L. M. Duan, and P. Zoller, in Experimental Quantum Computation and Information Proceedings of the Inte