ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum optical implementation of quantum information processing

156   0   0.0 ( 0 )
 نشر من قبل Julio Lamas-Knapp
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By popular request we post these old (from 2001) lecture notes of the Varenna Summer School Proceedings. The original was published as J. I. Cirac, L. M. Duan, and P. Zoller, in Experimental Quantum Computation and Information Proceedings of the International School of Physics Enrico Fermi, Course CXLVIII, p. 263, edited by F. Di Martini and C. Monroe (IOS Press, Amsterdam, 2002).



قيم البحث

اقرأ أيضاً

Quantum information offers the promise of being able to perform certain communication and computation tasks that cannot be done with conventional information technology (IT). Optical Quantum Information Processing (QIP) holds particular appeal, since it offers the prospect of communicating and computing with the same type of qubit. Linear optical techniques have been shown to be scalable, but the corresponding quantum computing circuits need many auxiliary resources. Here we present an alternative approach to optical QIP, based on the use of weak cross-Kerr nonlinearities and homodyne measurements. We show how this approach provides the fundamental building blocks for highly efficient non-absorbing single photon number resolving detectors, two qubit parity detectors, Bell state measurements and finally near deterministic control-not (CNOT) gates. These are essential QIP devices
Nuclear magnetic resonance (NMR) has been widely used in the context of quantum information processing (QIP). However, despite the great similarities between NMR and nuclear quadrupole resonance (NQR), no experimental implementation for QIP using NQR has been reported. We describe the implementation of basic quantum gates and their applications on the creation of pseudopure states using linearly polarized radiofrequency pulses under static magnetic field perturbation. The NQR quantum operations were implemented using a single crystal sample of KClO3 and observing 35Cl nuclei, which posses spin 3/2 and give rise to a 2-qubit system. The results are very promising and indicate that NQR can be successfully used for performing fundamental experiments in QIP. One advantage of NQR in comparison to NMR is that the main interaction is internal to the sample, which makes the system more compact, lowering its cost and making it easier to be miniaturized to solid state devices.
The optical fibre is an essential tool for our communication infrastructure since it is the main transmission channel for optical communications. The latest major advance in optical fibre technology is spatial division multiplexing (SDM), where new f ibre designs and components establish multiple co-existing data channels based on light propagation over distinct transverse optical modes. Simultaneously, there have been many recent developments in the field of quantum information processing (QIP), with novel protocols and devices in areas such as computing, communication and metrology. Here, we review recent works implementing QIP protocols with SDM optical fibres, and discuss new possibilities for manipulating quantum systems based on this technology.
Masking of quantum information spreads it over nonlocal correlations and hides it from the subsystems. It is known that no operation can simultaneously mask all pure states [Phys. Rev. Lett. 120, 230501 (2018)], so in what sense is quantum informatio n masking useful? Here, we extend the definition of quantum information masking to general mixed states, and show that the resource of maskable quantum states are far more abundant than the no-go theorem seemingly suggests. Geometrically, the simultaneously maskable states lays on hyperdisks in the state hypersphere, and strictly contain the broadcastable states. We devise a photonic quantum information masking machine using time-correlated photons to experimentally investigate the properties of qubit masking, and demonstrate the transfer of quantum information into bipartite correlations and its faithful retrieval. The versatile masking machine has decent extensibility, and may be applicable to quantum secret sharing and fault-tolerant quantum communication. Our results provide some insights on the comprehension and potential application of quantum information masking.
As a result of the capabilities of quantum information, the science of quantum information processing is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations of the underlying theory, on developi ng new applications of quantum information and on physically realizing controllable quantum devices. The purpose of this primer is to provide an elementary introduction to quantum information processing, and then to briefly explain how we hope to exploit the advantages of quantum information. These two sections can be read independently. For reference, we have included a glossary of the main terms of quantum information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا