ﻻ يوجد ملخص باللغة العربية
By offering effective modal volumes significantly less than a cubic wavelength, slot-waveguide cavities offer a new in-road into strong atom-photon coupling in the visible regime. Here we explore two-dimensional arrays of coupled slot cavities which underpin designs for novel quantum emulators and polaritonic quantum phase transition devices. Specifically, we investigate the lateral coupling characteristics of diamond-air and GaP-air slot waveguides using numerically-assisted coupled-mode theory, and the longitudinal coupling properties via distributed Bragg reflectors using mode-propagation simulations. We find that slot-waveguide cavities in the Fabry-Perot arrangement can be coupled and effectively treated with a tight-binding description, and are a suitable platform for realizing Jaynes-Cummings-Hubbard physics.
To take existing quantum optical experiments and devices into more practical regimes requires the construction of robust, solid-state implementations. In particular, to observe the strong-coupling regime of atom-photon interactions requires very smal
We demonstrate a platform for implementing quantum walks that overcomes many of the barriers associated with photonic implementations. We use coupled fiber-optic cavities to implement time-bin encoded walks in an integrated system. We show that this
We present the point-coupling Hamiltonian as a model for frequency-independent linear optical devices acting on propagating optical modes described as a continua of harmonic oscillators. We formally integrate the Heisenberg equations of motion for th
We propose an efficient method to realize a large-scale one-way quantum computer in a two-dimensional (2D) array of coupled cavities, based on coherent displacements of an arbitrary state of cavity fields in a closed phase space. Due to the nontrivia
High index optical waveguide devices such as slab waveguides, strip waveguides and fibers play extremely important roles in a wide range of modern applications including telecommunications, sensing, lasing, interferometry, and resonant amplification.