ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient optical quantum information processing

132   0   0.0 ( 0 )
 نشر من قبل William Munro
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum information offers the promise of being able to perform certain communication and computation tasks that cannot be done with conventional information technology (IT). Optical Quantum Information Processing (QIP) holds particular appeal, since it offers the prospect of communicating and computing with the same type of qubit. Linear optical techniques have been shown to be scalable, but the corresponding quantum computing circuits need many auxiliary resources. Here we present an alternative approach to optical QIP, based on the use of weak cross-Kerr nonlinearities and homodyne measurements. We show how this approach provides the fundamental building blocks for highly efficient non-absorbing single photon number resolving detectors, two qubit parity detectors, Bell state measurements and finally near deterministic control-not (CNOT) gates. These are essential QIP devices



قيم البحث

اقرأ أيضاً

By popular request we post these old (from 2001) lecture notes of the Varenna Summer School Proceedings. The original was published as J. I. Cirac, L. M. Duan, and P. Zoller, in Experimental Quantum Computation and Information Proceedings of the Inte rnational School of Physics Enrico Fermi, Course CXLVIII, p. 263, edited by F. Di Martini and C. Monroe (IOS Press, Amsterdam, 2002).
The optical fibre is an essential tool for our communication infrastructure since it is the main transmission channel for optical communications. The latest major advance in optical fibre technology is spatial division multiplexing (SDM), where new f ibre designs and components establish multiple co-existing data channels based on light propagation over distinct transverse optical modes. Simultaneously, there have been many recent developments in the field of quantum information processing (QIP), with novel protocols and devices in areas such as computing, communication and metrology. Here, we review recent works implementing QIP protocols with SDM optical fibres, and discuss new possibilities for manipulating quantum systems based on this technology.
We present the realization of a ultra fast shutter for optical fields, which allows to preserve a generic polarization state, based on a self-stabilized interferometer. It exhibits high (or low) transmittivity when turned on (or inactive), while the fidelity of the polarization state is high. The shutter is realized through two beam displacing prisms and a longitudinal Pockels cell. This can represent a useful tool for controlling light-atom interfaces in quantum information processing.
As a result of the capabilities of quantum information, the science of quantum information processing is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations of the underlying theory, on developi ng new applications of quantum information and on physically realizing controllable quantum devices. The purpose of this primer is to provide an elementary introduction to quantum information processing, and then to briefly explain how we hope to exploit the advantages of quantum information. These two sections can be read independently. For reference, we have included a glossary of the main terms of quantum information.
104 - F. Jelezko , J. Wrachtrup 2005
Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are cons idered to be promising candidates for first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defect in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploring long coherence time (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to the spin state readout via spin-selective scattering of photon. This also allows using of spin state as robust memory for flying qubits (photons).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا