ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiplicity preservation for orthogonal-symplectic and unitary dual pair correspondences

412   0   0.0 ( 0 )
 نشر من قبل Binyong Sun
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Over a non-archimedean local field of characteristic zero, we prove the multiplicity preservation for orthogonal-symplectic dual pair correspondences and unitary dual pair correspondences.



قيم البحث

اقرأ أيضاً

Let $G$ be a real classical group of type $B$, $C$, $D$ (including the real metaplectic group). We consider a nilpotent adjoint orbit $check{mathcal O}$ of $check G$, the Langlands dual of $G$ (or the metaplectic dual of $G$ when $G$ is a real metapl ectic group). We classify all special unipotent representations of $G$ attached to $check{mathcal O}$, in the sense of Barbasch and Vogan. When $check{mathcal O}$ is of good parity, we construct all such representations of $G$ via the method of theta lifting. As a consequence of the construction and the classification, we conclude that all special unipotent representations of $G$ are unitarizable, as predicted by the Arthur-Barbasch-Vogan conjecture. We also determine precise structure of the associated cycles of special unipotent representations of $G$.
Random matrix theory has proven very successful in the understanding of the spectra of chaotic systems. Depending on symmetry with respect to time reversal and the presence or absence of a spin 1/2 there are three ensembles, the Gaussian orthogonal ( GOE), Gaussian unitary (GUE), and Gaussian symplectic (GSE) one. With a further particle-antiparticle symmetry the chiral variants of these ensembles, the chiral orthogonal, unitary, and symplectic ensembles (the BDI, AIII, and CII in Cartans notation) appear. A microwave study of the chiral ensembles is presented using a linear chain of evanescently coupled dielectric cylindrical resonators. In all cases the predicted repulsion behavior between positive and negative eigenvalues for energies close to zero could be verified.
Given a Schubert class on $Gr(k,V)$ where $V$ is a symplectic vector space of dimension $2n$, we consider its restriction to the symplectic Grassmannian $SpGr(k,V)$ of isotropic subspaces. Pragacz gave tableau formulae for positively computing the ex pansion of these $H^*(Gr(k,V))$ classes into Schubert classes of the target when $k=n$, which corresponds to expanding Schur polynomials into $Q$-Schur polynomials. Coskun described an algorithm for their expansion when $kleq n$. We give a puzzle-based formula for these expansions, while extending them to equivariant cohomology. We make use of a new observation that usual Grassmannian puzzle pieces are already enough to do some $2$-step Schubert calculus, and apply techniques from quantum integrable systems (``scattering diagrams).
The Landauer-Buttiker formalism establishes an equivalence between the electrical conduction through a device, e.g., a quantum dot, and the transmission. Guided by this analogy we perform transmission measurements through three-port microwave graphs with orthogonal, unitary, and symplectic symmetry thus mimicking three-terminal voltage drop devices. One of the ports is placed as input and a second one as output, while a third port is used as a probe. Analytical predictions show good agreement with the measurements in the presence of orthogonal and unitary symmetries, provided that the absorption and the influence of the coupling port are taken into account. The symplectic symmetry is realized in specifically designed graphs mimicking spin 1/2 systems. Again a good agreement between experiment and theory is found. For the symplectic case the results are marginally sensitive to absorption and coupling strength of the port, in contrast to the orthogonal and unitary case.
485 - Sergey Lysenko 2020
Let X be a smooth projective curve over an algebraically closed field of characteristic >2. Consider the dual pair H=GSO_{2m}, G=GSp_{2n} over X, where H splits over an etale two-sheeted covering of X. Write Bun_G and Bun_H for the stacks of G-torsor s and H-torsors on X. We show that for mle n (respectively, for m>n) the theta-lifting functor from D(Bun_H) to D(Bun_G) (respectively, from D(Bun_G) to D(Bun_H)) commutes with Hecke functors with respect to a morphism of the corresponding L-groups involving the SL_2 of Arthur. So, they realize the geometric Langlands functoriality for the corresponding morphisms of L-groups. As an application, we prove a particular case of the geometric Langlands conjectures for GSp_4. Namely, we construct the automorphic Hecke eigensheaves on Bun_{GSp_4} corresponding to the endoscopic local systems on X.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا