ﻻ يوجد ملخص باللغة العربية
Given a Schubert class on $Gr(k,V)$ where $V$ is a symplectic vector space of dimension $2n$, we consider its restriction to the symplectic Grassmannian $SpGr(k,V)$ of isotropic subspaces. Pragacz gave tableau formulae for positively computing the expansion of these $H^*(Gr(k,V))$ classes into Schubert classes of the target when $k=n$, which corresponds to expanding Schur polynomials into $Q$-Schur polynomials. Coskun described an algorithm for their expansion when $kleq n$. We give a puzzle-based formula for these expansions, while extending them to equivariant cohomology. We make use of a new observation that usual Grassmannian puzzle pieces are already enough to do some $2$-step Schubert calculus, and apply techniques from quantum integrable systems (``scattering diagrams).
We study the relation between quantum affine algebras of type A and Grassmannian cluster algebras. Hernandez and Leclerc described an isomorphism from the Grothendieck ring of a certain subcategory $mathcal{C}_{ell}$ of $U_q(hat{mathfrak{sl}_n})$-mod
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes
We study the equivariant oriented cohomology ring $h_T(G/P)$ of partial flag varieties using the moment map approach. We define the right Hecke action on this cohomology ring, and then prove that the respective Bott-Samelson classes in $h_{T}(G/P)$ c
For a finite-dimensional gentle algebra, it is already known that the functorially finite torsion classes of its category of finite-dimensional modules can be classified using a combinatorial interpretation, called maximal non-crossing sets of string
We provide a characterization of Symplectic Grassmannians in terms of their Varieties of Minimal Rational Tangents.