ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization memory in single Quantum Dots

170   0   0.0 ( 0 )
 نشر من قبل Eilon Poem
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the polarization memory of excitonic and biexcitonic optical transitions from single quantum dots at either positive, negative or neutral charge states. Positive, negative and no circular or linear polarization memory was observed for various spectral lines, under the same quasi-resonant excitation below the wetting layer band-gap. We developed a model which explains both qualitatively and quantitatively the experimentally measured polarization spectrum for all these optical transitions. We consider quite generally the loss of spin orientation of the photogenerated electron-hole pair during their relaxation towards the many-carrier ground states. Our analysis unambiguously demonstrates that while electrons maintain their initial spin polarization to a large degree, holes completely dephase.

قيم البحث

اقرأ أيضاً

We study the absorption and emission polarization of single semiconductor quantum dots in semiconductor nanowires. We show that the polarization of light absorbed or emitted by a nanowire quantum dot strongly depends on the orientation of the nanowir e with respect to the directions along which light is incident or emitted. Light is preferentially linearly polarized when directed perpendicular to the nanowire elongation. In contrast, the degree of linear polarization is low for light directed along the nanowire. This result is vital for photonic applications based on intrinsic properties of quantum dots, such as generation of entangled photons. As an example, we demonstrate optical access to the spin states of a single nanowire quantum dot.
82 - M. C. Rogge , E. Rasanen , 2010
The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.
We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Ov erhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called dark states, and the elimination of the difference field. We show that in the case of unequal dots, build up of difference fields generally accompanies the nuclear polarization process, whereas for nearly identical dots, build up of difference fields competes with polarization saturation in dark states. The elimination of the difference field does not, in general, correspond to a stable steady state of the polarization process.
We present an experimental and theoretical study of the polarized photoluminescence spectrum of single semiconductor quantum dots in various charge states. We compare our high resolution polarization sensitive spectral measurements with a new many-ca rrier theoretical model, which was developed for this purpose. The model considers both the isotropic and anisotropic exchange interactions between all participating electron-hole pairs. With this addition, we calculate both the energies and polarizations of all optical transitions between collective, quantum dot confined charge carrier states. We succeed in identifying most of the measured spectral lines. In particular, the lines resulting from singly-, doubly- and triply- negatively charged excitons and biexcitons. We demonstrate that lines emanating from evenly charged states are linearly polarized. Their polarization direction does not necessarily coincide with the traditional crystallographic direction. It depends on the shells of the single carriers, which participate in the recombination process.
Early experiments on spin-blockaded double quantum dots revealed surprising robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias [see e.g. K. Ono, S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004)]. Experimenta l evidence strongly indicates that dynamical nuclear polarization plays a central role, but the mechanism has remained a mystery. Here we introduce a minimal albeit realistic model of coupled electron and nuclear spin dynamics which supports robust self-sustained oscillations. Our mechanism relies on a nuclear-spin analog of the tunneling magnetoresistance phenomenon (spin-dependent tunneling rates in the presence of an inhomogeneous Overhauser field) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The extremely long oscillation periods (up to hundreds of seconds) observed in experiments as well as the differences in phenomenology between vertical and lateral quantum dot structures are naturally explained in the proposed framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا