ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-sustaining dynamical nuclear polarization oscillations in quantum dots

347   0   0.0 ( 0 )
 نشر من قبل Mark Rudner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Early experiments on spin-blockaded double quantum dots revealed surprising robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias [see e.g. K. Ono, S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004)]. Experimental evidence strongly indicates that dynamical nuclear polarization plays a central role, but the mechanism has remained a mystery. Here we introduce a minimal albeit realistic model of coupled electron and nuclear spin dynamics which supports robust self-sustained oscillations. Our mechanism relies on a nuclear-spin analog of the tunneling magnetoresistance phenomenon (spin-dependent tunneling rates in the presence of an inhomogeneous Overhauser field) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The extremely long oscillation periods (up to hundreds of seconds) observed in experiments as well as the differences in phenomenology between vertical and lateral quantum dot structures are naturally explained in the proposed framework.



قيم البحث

اقرأ أيضاً

We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Ov erhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called dark states, and the elimination of the difference field. We show that in the case of unequal dots, build up of difference fields generally accompanies the nuclear polarization process, whereas for nearly identical dots, build up of difference fields competes with polarization saturation in dark states. The elimination of the difference field does not, in general, correspond to a stable steady state of the polarization process.
Hanle effect is ubiquitous in the study of spin-related phenomena and has been used to determine spin lifetime, precession and transport in semiconductors. Here, we report an experimental observation of anomalous Hanle effect in individual self-assem bled InAs/GaAs quantum dots where we find that a sizeable photo-created electron spin polarization can be maintained in transverse fields as high as 1T until it abruptly collapses. The striking broadening of the Hanle curve by a factor of ~20 and its bistability upon reversal of the magnetic sweep direction points to a novel dynamical nuclear spin polarization mechanism where the effective nuclear magnetic field compensates the transverse applied field. This interpretation is further supported by the measurement of actual electron Zeeman splitting which exhibits an abrupt increase at the Hanle curve collapse. Strong inhomogeneous quadrupolar interactions typical for strained quantum dots are likely to play a key role in polarizing nuclear spins perpendicular to the optically injected spin orientation.
216 - O. Krebs , B. Eble , A. Lema^itre 2009
We report on the influence of hyperfine interaction on the optical orientation of singly charged excitons X+ and X- in self-assembled InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminesce nce at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50kHz modulated excitation polarization, which becomes however strongly inhibited under steady optical pumping conditions because of dynamical nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ~4 T) when it is generated in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin flip in the total magnetic field. Eventually, we emphasize the similarities and differences between X+ and X- trions with respect to the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description.
We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nucl ear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the $g$-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.
We investigated optical spin orientation and dynamic nuclear polarization (DNP) in individual self-assembled InGaAs/GaAs quantum dots (QDs) doped by a single Mn atom, a magnetic impurity providing a neutral acceptor A$^0$ with an effective spin $J=1$ . We find that the spin of an electron photo-created in such a quantum dot can be efficiently oriented by a quasi-resonant circularly-polarized excitation. For the electron spin levels which are made quasi-degenerate by a magnetic field compensating the exchange interaction $Delta_e$ with A$^0$, there is however a full depolarization due the anisotropic part of the exchange. Still, in most studied QDs, the spin polarized photo-electrons give rise to a pronounced DNP which grows with a longitudinal magnetic field until a critical field where it abruptly vanishes. For some QDs, several replica of such DNP sequence are observed at different magnetic fields. This striking behavior is qualitatively discussed as a consequence of different exchange interactions experienced by the electron, driving the DNP rate via the energy cost of electron-nucleus spin flip-flops.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا