ﻻ يوجد ملخص باللغة العربية
The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.
We argue that Coulomb blockade phenomena are a useful probe of the cross-over to strong correlation in quantum dots. Through calculations at low density using variational and diffusion quantum Monte Carlo (up to r_s ~ 55), we find that the addition e
We have measured the carrier spin dynamics in p-doped InAs/GaAs quantum dots by pump-probe photo-induced circular dichroism and time-resolved photoluminescence experiments. We show that the hole spin dephasing is controlled by the hyperfine interacti
We investigated optical spin orientation and dynamic nuclear polarization (DNP) in individual self-assembled InGaAs/GaAs quantum dots (QDs) doped by a single Mn atom, a magnetic impurity providing a neutral acceptor A$^0$ with an effective spin $J=1$
We demonstrate that bistability of the nuclear spin polarization in optically pumped semiconductor quantum dots is a general phenomenon possible in dots with a wide range of parameters. In experiment, this bistability manifests itself via the hystere
We measured the polarization memory of excitonic and biexcitonic optical transitions from single quantum dots at either positive, negative or neutral charge states. Positive, negative and no circular or linear polarization memory was observed for var