ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-power Radio Galaxies in the Distant Universe: A search for FRI at 1<z<2 in the COSMOS field

71   0   0.0 ( 0 )
 نشر من قبل Marco Chiaberge
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a search for FRI radio galaxies between 1 < z < 2 in the COSMOS field. In absence of spectroscopic redshift measurements, the selection method is based on multiple steps which make use of both radio and optical constraints. The basic assumptions are that 1) the break in radio power between low-power FRIs and the more powerful FRIIs does not change with redshift, and 2) that the photometric properties of the host galaxies of low power radio galaxies in the distant universe are similar to those of FRIIs in the same redshift bin, as is the case for nearby radio galaxies. We describe the results of our search, which yields 37 low-power radio galaxy candidates that are possibly FRIs. We show that a large fraction of these low-luminosity radio galaxies display a compact radio morphology, that does not correspond to the FRI morphological classification. Furthermore, our objects are apparently associated with galaxies that show clear signs of interactions, at odds with the typical behavior observed in low-z FRI hosts. The compact radio morphology might imply that we are observing intrinsically small and possibly young objects, that will eventually evolve into the giant FRIs we observe in the local universe. One of the objects appears as point-like in HST images. This might belong to a population of FRI-QSOs, which however would represent a tiny minority of the overall population of high-z FRIs. As for the local FRIs, a large fraction of our objects are likely to be associated with groups or clusters, making them beacons for high redshift clusters of galaxies. Our search for candidate high-z FRIs we present in this paper constitutes a pilot study for objects to be observed with future high-resolution and high-sensitivity instruments (shortened)


قيم البحث

اقرأ أيضاً

Combining the catalogue of galaxy morphologies in the COSMOS field and the sample of H$alpha$ emitters at redshifts $z=0.4$ and $z=0.84$ of the HiZELS survey, we selected $sim$ 220 star-forming bulgeless systems (Sersic index $n leq 1.5$) at both epo chs. We present their star formation properties and we investigate their contribution to the star formation rate function (SFRF) and global star formation rate density (SFRD) at $z < 1$. For comparison, we also analyse H$alpha$ emitters with more structurally evolved morphologies that we split into two classes according to their Sersic index $n$: intermediate ($ 1.5 < n leq 3 $) and bulge-dominated ($n > 3$). At both redshifts the SFRF is dominated by the contribution of bulgeless galaxies and we show that they account for more than 60% of the cosmic SFRD at $z < 1$. The decrease of the SFRD with redshift is common to the three morphological types but it is stronger for bulge-dominated systems. Star-forming bulgeless systems are mostly located in regions of low to intermediate galaxy densities ($Sigma sim 1 - 4$ Mpc$^{-2}$) typical of field-like and filament-like environments and their specific star formation rates (sSFRs) do not appear to vary strongly with local galaxy density. Only few bulgeless galaxies in our sample have high (sSFR $>$ 10$^{-9}$ yr$^{-1}$) and these are mainly low-mass systems. Above $M_* sim 10^{10}$ M$_{odot}$ bulgeless are evolving at a normal rate (10$^{-9}$ yr$^{-1} <$ sSFR $<$10$^{-10}$ yr$^{-1}$) and in the absence of an external trigger (i.e. mergers/strong interactions) they might not be able to develop a central classical bulge.
We investigate how the shape of the galaxy two-point correlation function as measured in the zCOSMOS survey depends on local environment, quantified in terms of the density contrast on scales of 5 Mpc/h. We show that the flat shape previously observe d at redshifts between z=0.6 and z=1 can be explained by this volume being simply 10% over-abundant in high-density environments, with respect to a Universal density probability distribution function. When galaxies corresponding to the top 10% tail of the distribution are excluded, the measured w_p(r_p) steepens and becomes indistinguishable from LCDM predictions on all scales. This is the same effect recognised by Abbas & Sheth in the SDSS data at z~0 and explained as a natural consequence of halo-environment correlations in a hierarchical scenario. Galaxies living in high-density regions trace dark matter halos with typically higher masses, which are more correlated. If the density probability distribution function of the sample is particularly rich in high-density regions because of the variance introduced by its finite size, this produces a distorted two-point correlation function. We argue that this is the dominant effect responsible for the observed peculiar clustering in the COSMOS field.
We have undertaken a survey for HI 21-cm absorption within the host galaxies of z ~ 1.2 - 1.5 radio sources, in the search of the cool neutral gas currently missing at z > 1. This deficit is believed to be due to the optical selection of high redshif t objects biasing surveys towards sources of sufficient ultra-violet luminosity to ionise all of the gas in the surrounding galaxy. In order to avoid this bias, we have selected objects above blue magnitudes of B~20, indicating ultra-violet luminosities below the critical value above which 21-cm has never been detected. As a secondary requirement to the radio flux and faint optical magnitude, we shortlist targets with radio spectra suggestive of compact sources, in order to maximise the coverage of background emission. From this, we obtain one detection out of ten sources searched, which at z=1.278 is the third highest redshift detection of associated 21-cm absorption to date. Accounting for the spectra compromised by radio frequency interference, as well as various other possible pitfalls (reliable optical redshifts and turnover frequencies indicative of compact emission), we estimate a detection rate of ~30%, close to that expected for L_UV < 1e23 W/Hz sources.
110 - Ranieri D. Baldi 2014
We select a sample of radio galaxies at high redshifts (z>~1) in the COSMOS field, by cross-matching optical/infrared images with the FIRST radio data. The aim of this study is to explore the high-z radio-loud (RL) AGN population at much lower lumino sities than the classical samples of distant radio sources and similar to those of the local population of radio galaxies. The wide multiwavelength coverage provided by the COSMOS survey allows us to derive their Spectral Energy Distributions (SEDs). The SED modeling with stellar and dust components (with our code 2SPD) returns several important quantities associated with the AGN and host properties. The final sample consists of 74 RL AGN, which extends the sample previously selected by Chiaberge et al. (2009) and studied by Baldi et al. (2013). The resulting photometric redshifts range from z~0.7 to 3. The sample mostly includes compact radio sources, but also 21 FRIIs; the radio power distribution of the sample at 1.4 GHz covers ~10^(31.5)-10^(34.3) ergsHz. The stellar mass of the hosts ranges ~10^(10)-10^(11.5) M_{sun}. The SEDs are dominated by the contribution from an old stellar population for most of the sources. UV and mid-IR (MIR) excesses are observed for half of the sample. The dust luminosities are in the range L_(dust) ~10^(43)-10^(45.5) erg/s (T ~350-1200 K). UV luminosities at 2000 A ranges ~10^(41.5)-10^(45.5) erg/s. UV emission is significantly correlated with both IR and radio luminosities, the former being the stronger link. However, the origin of UV and dust emission, whether it is produced by the AGN of by star formation, is still unclear. Our results show that this RL AGN population at high redshifts displays a wide variety of properties from possible quasars at the highest luminosities, to low-luminosity old galaxies, similarly to the local FRI-FRII dichotomy.
We have detected the 158 {mu}m [CII] line from 12 galaxies at z~1-2. This is the first survey of this important starformation tracer at redshifts covering the epoch of maximum star-formation in the Universe and quadruples the number of reported high z [CII] detections. The line is very luminous, between <0.024-0.65% of the far-infrared continuum luminosity of our sources, and arises from PDRs on molecular cloud surfaces. An exception is PKS 0215+015, where half of the [CII] emission could arise from XDRs near the central AGN. The L[CII] /LFIR ratio in our star-formation-dominated systems is ~8 times larger than that of our AGN-dominated systems. Therefore this ratio selects for star-formation-dominated systems. Furthermore, the L[CII]/LFIR and L[CII]/L(CO(1-0)) ratios in our starforming galaxies and nearby starburst galaxies are the same, so that luminous starforming galaxies at earlier epochs (z~1-2) appear to be scaled
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا