ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulgeless galaxies in the COSMOS field: environment and star formation evolution at $z < 1$

78   0   0.0 ( 0 )
 نشر من قبل Marco Grossi Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Combining the catalogue of galaxy morphologies in the COSMOS field and the sample of H$alpha$ emitters at redshifts $z=0.4$ and $z=0.84$ of the HiZELS survey, we selected $sim$ 220 star-forming bulgeless systems (Sersic index $n leq 1.5$) at both epochs. We present their star formation properties and we investigate their contribution to the star formation rate function (SFRF) and global star formation rate density (SFRD) at $z < 1$. For comparison, we also analyse H$alpha$ emitters with more structurally evolved morphologies that we split into two classes according to their Sersic index $n$: intermediate ($ 1.5 < n leq 3 $) and bulge-dominated ($n > 3$). At both redshifts the SFRF is dominated by the contribution of bulgeless galaxies and we show that they account for more than 60% of the cosmic SFRD at $z < 1$. The decrease of the SFRD with redshift is common to the three morphological types but it is stronger for bulge-dominated systems. Star-forming bulgeless systems are mostly located in regions of low to intermediate galaxy densities ($Sigma sim 1 - 4$ Mpc$^{-2}$) typical of field-like and filament-like environments and their specific star formation rates (sSFRs) do not appear to vary strongly with local galaxy density. Only few bulgeless galaxies in our sample have high (sSFR $>$ 10$^{-9}$ yr$^{-1}$) and these are mainly low-mass systems. Above $M_* sim 10^{10}$ M$_{odot}$ bulgeless are evolving at a normal rate (10$^{-9}$ yr$^{-1} <$ sSFR $<$10$^{-10}$ yr$^{-1}$) and in the absence of an external trigger (i.e. mergers/strong interactions) they might not be able to develop a central classical bulge.

قيم البحث

اقرأ أيضاً

We investigate the relationship between environment and the galaxy main sequence (the relationship between stellar mass and star formation rate) and also the relationship between environment and radio luminosity (P$_{rm 1.4GHz}$) to shed new light on the effects of the environments on galaxies. We use the VLA-COSMOS 3 GHz catalogue that consists of star-forming galaxies (SFGs) and quiescent galaxies (AGN) in three different environments (field, filament, cluster) and for three different galaxy types (satellite, central, isolated). We perform for the first time a comparative analysis of the distribution of SFGs with respect to the main sequence (MS) consensus region from the literature, taking into account galaxy environment and using radio observations at 0.1 $leq$ z $leq$ 1.2. Our results corroborate that SFR is declining with cosmic time which is consistent with the literature. We find that the slope of the MS for different $z$ and M$_{*}$ bins is shallower than the MS consensus with a gradual evolution towards higher redshift bins, irrespective of environments. We see no SFR trends on both environments and galaxy type given the large errors. In addition, we note that the environment does not seem to be the cause of the flattening of MS at high stellar masses for our sample.
Using the Herschel Space Observatory we have observed a representative sample of 87 powerful 3CR sources at redshift z < 1. The far-infrared (FIR, 70-500 micron) photometry is combined with mid-infrared (MIR) photometry from the Wide-Field Infrared S urvey Explorer (WISE) and catalogued data to analyse the complete spectral energy distributions (SEDs) of each object from optical to radio wavelength. To disentangle the contributions of different components, the SEDs are fitted with a set of templates to derive the luminosities of host galaxy starlight, dust torus emission powered by active galactic nuclei (AGN) and cool dust heated by stars. The level of emission from relativistic jets is also estimated, in order to isolate the thermal host galaxy contribution. The new data are in line with the orientation-based unification of high-excitation radio-loud AGN, in that the dust torus becomes optically thin longwards of 30 micron. The low excitation radio galaxies and the MIR weak sources represent MIR- and FIR-faint AGN population different from the high-excitation MIR-bright objects; it remains an open question whether they are at a later evolutionary state or an intrinsically different population. The derived luminosities for host starlight and dust heated by star formation are converted to stellar masses and star formation rates (SFR). The host-normalized SFR of the bulk of the 3CR sources is low when compared to other galaxy populations at the same epoch. Estimates of the dust mass yield a 1--100 times lower dust/stellar mass ratio than for the Milky Way, indicating that these 3CR hosts have very low levels of interstellar matter explaining the low level of star formation. Less than 10% of the 3CR sources show levels of star formation above those of the main sequence of star forming galaxies.
We investigate the role of the delineated cosmic web/filaments on the star formation activity by exploring a sample of 425 narrow-band selected H{alpha} emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large scale structure (LSS) at z=0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter (MMF) algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific star formation rate (sSFR), the mean SFR-Mass relation and its scatter for both H{alpha} emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of H{alpha} emitters varies with environment and is enhanced in filamentary structures at z~1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of H{alpha} star-forming galaxies in filaments. Our results show that filaments are the likely physical environments which are often classed as the intermediate densities, and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.
ALMA Cycle 2 observations of the long wavelength dust emission in 145 star-forming galaxies are used to probe the evolution of star-forming ISM. We also develop the physical basis and empirical calibration (with 72 low-z and z ~ 2 galaxies) for using the dust continuum as a quantitative probe of interstellar medium (ISM) masses. The galaxies with highest star formation rates (SFRs) at <z> = 2.2 and 4.4 have gas masses up to 100 times that of the Milky Way and gas mass fractions reaching 50 to 80%, i.e. gas masses 1 - 4 times their stellar masses. We find a single high-z star formation law: SFR = 35 M_ mol^0.89 x (1+z)_{z=2}^0.95 x (sSFR)_{MS}^0.23 msun yr^-1 -- an approximately linear dependence on the ISM mass and an increased star formation efficiency per unit gas mass at higher redshift. Galaxies above the Main Sequence (MS) have larger gas masses but are converting their ISM into stars on a timescale only slightly shorter than those on the MS -- thus these starbursts are largely the result of having greatly increased gas masses rather than and increased efficiency for converting gas to stars. At z $> 1$, the entire population of star-forming galaxies has $sim$ 2 - 5 times shorter gas depletion times than low-z galaxies. These shorter depletion times indicate a different mode of star formation in the early universe -- most likely dynamically driven by compressive, high-dispersion gas motions -- a natural consequence of the high gas accretion rates.
Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2<z<1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star form ation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with Mstar > 10^9.5 Msun decreases with time from ~0.35 at 0.8<z<1.0 to ~0.05 at 0.2<z<0.4 irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with Mstar > 10^10.5 Msun at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z~0.9 to z~0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological K-correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا