ترغب بنشر مسار تعليمي؟ اضغط هنا

A survey for HI in the distant Universe: the detection of associated 21-cm absorption at z=1.28

189   0   0.0 ( 0 )
 نشر من قبل Stephen Curran Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have undertaken a survey for HI 21-cm absorption within the host galaxies of z ~ 1.2 - 1.5 radio sources, in the search of the cool neutral gas currently missing at z > 1. This deficit is believed to be due to the optical selection of high redshift objects biasing surveys towards sources of sufficient ultra-violet luminosity to ionise all of the gas in the surrounding galaxy. In order to avoid this bias, we have selected objects above blue magnitudes of B~20, indicating ultra-violet luminosities below the critical value above which 21-cm has never been detected. As a secondary requirement to the radio flux and faint optical magnitude, we shortlist targets with radio spectra suggestive of compact sources, in order to maximise the coverage of background emission. From this, we obtain one detection out of ten sources searched, which at z=1.278 is the third highest redshift detection of associated 21-cm absorption to date. Accounting for the spectra compromised by radio frequency interference, as well as various other possible pitfalls (reliable optical redshifts and turnover frequencies indicative of compact emission), we estimate a detection rate of ~30%, close to that expected for L_UV < 1e23 W/Hz sources.



قيم البحث

اقرأ أيضاً

We report a Giant Metrewave Radio Telescope (GMRT) survey for associated HI 21-cm absorption from 50 active galactic nuclei (AGNs), at $z approx 0.04 - 3.01$, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. Clean spectra were obtai ned towards 40 sources, yielding two new absorption detections, at $z = 0.229$ towards TXS 0003+380 and $z = 0.333$ towards TXS 1456+375, besides confirming an earlier detection, at $z = 1.277$ towards TXS 1543+480. There are 92 CJF sources, at $0.01 lesssim z lesssim 3.6$, with searches for associated HI 21-cm absorption, by far the largest uniformly-selected AGN sample with searches for such absorption. We find weak ($approx 2sigma$) evidence for a lower detection rate of HI 21-cm absorption at high redshifts, with detection rates of $28^{+10}_{-8}$% and $7^{+6}_{-4}$% in the low-$z$ ($z < z_{rm med}$) and high-$z$ ($z > z_{rm med}$) sub-samples, respectively. We use two-sample tests to find that the strength of the HI 21-cm absorption in the AGNs of our sample depends on both redshift and AGN luminosity, with a lower detection rate and weaker absorption at high redshifts and high ultraviolet/radio AGN luminosities. Unfortunately, the luminosity bias in our sample, with high-luminosity AGNs arising at high redshifts, implies that it is not currently possible to identify whether redshift evolution or AGN luminosity is the primary cause of the weaker absorption in high-$z$, high-luminosity AGNs. We find that the strength of HI 21-cm absorption does not depend on AGN colour, suggesting that dust extinction is not the main cause of reddening in the CJF sample.
We present the results of Giant Metrewave Radio Telescope (GMRT) observations to detect H{sc i} in absorption towards the cores of a sample of radio galaxies. From observations of a sample of 16 sources, we detect H{sc i} in absorption towards the co re of only one source, the FR,II radio galaxy 3C,452 which has been reported earlier by Gupta & Saikia (2006a). In this paper we present the results for the remaining sources which have been observed to a similar optical depth as for a comparison sample of compact steep-spectrum (CSS) and giga-hertz peaked spectrum (GPS) sources. We also compile available information on H{sc i} absorption towards the cores of extended radio sources observed with angular resolutions of a few arcsec or better. The fraction of extended sources with detection of H{sc i} absorption towards their cores is significantly smaller (7/47) than the fraction of H{sc i} detection towards CSS and GPS objects (28/49). For the cores of extended sources, there is no evidence of a significant correlation between H{sc i} column density towards the cores and the largest linear size of the sources. The distribution of the relative velocity of the principal absorbing component towards the cores of extended sources is not significantly different from that of the CSS and GPS objects. However, a few of the CSS and GPS objects have blue-shifted components $gapp$1000 km s$^{-1}$, possibly due to jet-cloud interactions. With the small number of detections towards cores, the difference in detection rate between FR,I (4/32) and FR,II (3/15) sources is within the statistical uncertainties.
134 - J. R. Allison 2012
We present results from a search for 21 cm associated HI absorption in a sample of 29 radio sources selected from the Australia Telescope 20 GHz survey. Observations were conducted using the Australia Telescope Compact Array Broadband Backend, with w hich we can simultaneously look for 21 cm absorption in a redshift range of 0.04 < z < 0.08, with a velocity resolution of 7 km/s . In preparation for future large-scale H I absorption surveys we test a spectral-line finding method based on Bayesian inference. We use this to assign significance to our detections and to determine the best-fitting number of spectral-line components. We find that the automated spectral-line search is limited by residuals in the continuum, both from the band-pass calibration and spectral-ripple subtraction, at spectral-line widths of Deltav_FWHM > 103 km/s . Using this technique we detect two new absorbers and a third, previously known, yielding a 10 per cent detection rate. Of the detections, the spectral-line profiles are consistent with the theory that we are seeing different orientations of the absorbing gas, in both the host galaxy and circumnuclear disc, with respect to our line-of-sight to the source. In order to spatially resolve the spectral-line components in the two new detections, and so verify this conclusion, we require further high-resolution 21 cm observations (~0.01 arcsec) using very long baseline interferometry.
158 - R. Dutta , R. Srianand , N. Gupta 2016
We present the results from our search for HI 21-cm absorption in a sample of 16 strong FeII systems ($W_{rm r}$(MgII $lambda2796$) $ge1.0$ AA and $W_{rm r}$(FeII $lambda2600$) or $W_{rm FeII}$ $ge1$ AA) at $0.5<z<1.5$ using the Giant Metrewave Radio Telescope and the Green Bank Telescope. We report six new HI 21-cm absorption detections from our sample, which have increased the known number of detections in strong MgII systems at this redshift range by $sim50$%. Combining our measurements with those in the literature, we find that the detection rate of HI 21-cm absorption increases with $W_{rm FeII}$, being four times higher in systems with $W_{rm FeII}$ $ge1$ AA compared to systems with $W_{rm FeII}$ $<1$ AA. The $N$(HI) associated with the HI 21-cm absorbers would be $ge 2 times 10^{20}$ cm$^{-2}$, assuming a spin temperature of $sim500$ K (based on HI 21-cm absorption measurements of damped Lyman-$alpha$ systems at this redshift range) and unit covering factor. We find that HI 21-cm absorption arises on an average in systems with stronger metal absorption. We also find that quasars with HI 21-cm absorption detected towards them have systematically higher $E(B-V)$ values than those which do not. Further, by comparing the velocity widths of HI 21-cm absorption lines detected in absorption- and galaxy-selected samples, we find that they show an increasing trend (significant at $3.8sigma$) with redshift at $z<3.5$, which could imply that the absorption originates from more massive galaxy haloes at high-$z$. Increasing the number of HI 21-cm absorption detections at these redshifts is important to confirm various trends noted here with higher statistical significance.
75 - Fulvio Melia 2021
The EDGES collaboration has reported the detection of a global 21-cm signal with a plateau centered at 76 MHz (i.e., redshift 17.2), with an amplitude of 500^(+200)_(-500) mK. This anomalous measurement does not comport with standard cosmology, which can only accommodate an amplitude < 230 mK. Nevertheless, the line profiles redshift range (15 < z < 20) suggests a possible link to Pop III star formation and an implied evolution out of the `dark ages. Given this tension with the standard model, we here examine whether the observed 21-cm signal is instead consistent with the results of recent modeling based on the alternative Friedmann-Lemaitre-Robertson-Walker cosmology known as the R_h=ct universe, showing that--in this model--the CMB radiation might have been rethermalized by dust ejected into the IGM by the first-generation stars at redshift z < 16. We find that the requirements for this process to have occurred would have self-consistently established an equilibrium spin temperature T_s~3.4 K in the neutral hydrogen, via the irradiation of the IGM by deep penetrating X-rays emitted at the termination shocks of Pop III supernova remnants. Such a dust scenario has been strongly ruled out for the standard model, so the spin temperature (~3.3 K) inferred from the 21-cm absorption feature appears to be much more consistent with the R_h=ct profile than that implied by LCDM, for which adiabatic cooling would have established a spin temperature T_s(z=17.2)~6 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا