ترغب بنشر مسار تعليمي؟ اضغط هنا

A 158 Micron [CII] Line Survey of Galaxies at z ~ 1 to 2: An Indicator of Star Formation in the Early Universe

116   0   0.0 ( 0 )
 نشر من قبل Gordon Stacey
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have detected the 158 {mu}m [CII] line from 12 galaxies at z~1-2. This is the first survey of this important starformation tracer at redshifts covering the epoch of maximum star-formation in the Universe and quadruples the number of reported high z [CII] detections. The line is very luminous, between <0.024-0.65% of the far-infrared continuum luminosity of our sources, and arises from PDRs on molecular cloud surfaces. An exception is PKS 0215+015, where half of the [CII] emission could arise from XDRs near the central AGN. The L[CII] /LFIR ratio in our star-formation-dominated systems is ~8 times larger than that of our AGN-dominated systems. Therefore this ratio selects for star-formation-dominated systems. Furthermore, the L[CII]/LFIR and L[CII]/L(CO(1-0)) ratios in our starforming galaxies and nearby starburst galaxies are the same, so that luminous starforming galaxies at earlier epochs (z~1-2) appear to be scaled



قيم البحث

اقرأ أيضاً

The brightest observed emission line in many star-forming galaxies is the [CII] 158 micron line, making it detectable up to z~7. In order to better understand and quantify the [CII] emission as a tracer of star-formation, the theoretical ratio betwee n the [NII] 205 micron emission and the [CII] 158 micron emission has been employed to empirically determine the fraction of [CII] emission that originates from the ionized and neutral phases of the ISM. Sub-kiloparsec measurements of the [CII] 158 micron and [NII] 205 micron line in nearby galaxies have recently become available as part of the Key Insights in Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) and Beyond the Peak (BtP) programs. With the information from these two far-infrared lines along with the multi-wavelength suite of KINGFISH data, a calibration of the [CII] emission line as a star formation rate indicator and a better understanding of the [CII] deficit are pursued. [CII] emission is also compared to PAH emission in these regions to compare photoelectric heating from PAH molecules to cooling by [CII] in the neutral and ionized phases of the ISM. We find that the [CII] emission originating in the neutral phase of the ISM does not exhibit a deficit with respect to the infrared luminosity and is therefore preferred over the [CII] emission originating in the ionized phase of the ISM as a star formation rate indicator for the normal star-forming galaxies included in this sample.
The [CII] fine structure transition at 158 microns is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through meter wavelengths. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a SFR indicator at z>4. In this paper, we use a semi-analytical model of galaxy evolution (G.A.S.) combined with the code CLOUDY to predict the [CII] luminosity of a large number of galaxies at 4< z<8. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We study the LCII-SFR and LCII-Zg relations and show that they do not strongly evolve with redshift from z=4 and to z=8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher star formation rates but the correlations are very broad, with a scatter of about 0.5 dex for LCII-SFR. Our model reproduces the LCII-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local LCII-SFR relations. Accordingly, the local observed LCII-SFR relation does not apply at high-z. Our model naturally produces the [CII] deficit, which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the [CII] luminosity function, and show that it has a power law form in the range of LCII probed by the model with a slope alpha=1. The slope is not evolving from z=4 to z=8 but the number density of [CII]-emitters decreases by a factor of 20x. We discuss our predictions in the context of current observational estimates on both the differential and cumulative luminosity functions.
We report the detection of 158 micron [CII] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous (L_IR ~ 10^13 L_sun) starburst galaxy at z=1.3. The line is bright, and corresponds to a fraction L_[CII]/L_FIR = 2 x 10^-3 of the fa r-IR (FIR) continuum. The [CII], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n ~ 10^4.2 cm^-3, and that are illuminated by a far-UV radiation field ~10^3.2 times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L_[CII]/L_FIR ratio is higher than observed in local ULIRGs or in the few high-redshift QSOs detected in [CII], but the L_[CII]/L_FIR and L_CO/L_FIR ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.
159 - D. Schaerer , F. Boone , T. Jones 2015
Our objectives are to determine the properties of the interstellar medium (ISM) and of star-formation in typical star-forming galaxies at high redshift. Following up on our previous multi-wavelength observations with HST, Spitzer, Herschel, and the P lateau de Bure Interferometer (PdBI), we have studied a strongly lensed z=2.013 galaxy, the arc behind the galaxy cluster MACS J0451+0006, with ALMA to measure the [CII] 158 micron emission line, one of the main coolants of the ISM. [CII] emission from the southern part of this galaxy is detected at 10 $sigma$. Taking into account strong gravitational lensing, which provides a magnification of $mu=49$, the intrinsic lensing-corrected [CII]158 micron luminosity is $L(CII)=1.2 times 10^8 L_odot$. The observed ratio of [CII]-to-IR emission, $L(CII)/L(FIR) approx (1.2-2.4) times 10^{-3}$, is found to be similar to that in nearby galaxies. The same also holds for the observed ratio $L(CII)/L(CO)=2.3 times 10^3$, which is comparable to that of star-forming galaxies and active galaxy nuclei (AGN) at low redshift. We utilize strong gravitational lensing to extend diagnostic studies of the cold ISM to an order of magnitude lower luminosity ($L(IR) sim (1.1-1.3) times 10^{11} L_odot$) and SFR than previous work at high redshift. While larger samples are needed, our results provide evidence that the cold ISM of typical high redshift galaxies has physical characteristics similar to normal star forming galaxies in the local Universe.
We present, for the first time, a statistical study of [N II] 205 mciron line emission for a large sample of local luminous infrared galaxies using Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) data. Fo r our sample of galaxies, we investigate the correlation between the [N II] luminosity (LNII) and the total infrared luminosity (LIR), as well as the dependence of LNII/LIR ratio on LIR, far infrared colors (IRAS $f_{60}/f_{100}$) and the [O III] 88 micron to [N II] luminosity ratio. We find that LNII correlates almost linearly with LIR for non AGN galaxies (all having $L_{IR} < 10^{12} L_solar$) in our sample, which implies that LNII can serve as a SFR tracer which is particularly useful for high redshift galaxies which will be observed with forthcoming submm spectroscopic facilities such as the Atacama Large Millimeter/submillimeter Array. Our analysis shows that the deviation from the mean LNII-LIR relation correlates with tracers of the ionization parameter, which suggests the scatter in this relation is mainly due to the variations in the hardness, and/or ionization parameter, of the ambient galactic UV field among the sources in our sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا