ﻻ يوجد ملخص باللغة العربية
We have detected the 158 {mu}m [CII] line from 12 galaxies at z~1-2. This is the first survey of this important starformation tracer at redshifts covering the epoch of maximum star-formation in the Universe and quadruples the number of reported high z [CII] detections. The line is very luminous, between <0.024-0.65% of the far-infrared continuum luminosity of our sources, and arises from PDRs on molecular cloud surfaces. An exception is PKS 0215+015, where half of the [CII] emission could arise from XDRs near the central AGN. The L[CII] /LFIR ratio in our star-formation-dominated systems is ~8 times larger than that of our AGN-dominated systems. Therefore this ratio selects for star-formation-dominated systems. Furthermore, the L[CII]/LFIR and L[CII]/L(CO(1-0)) ratios in our starforming galaxies and nearby starburst galaxies are the same, so that luminous starforming galaxies at earlier epochs (z~1-2) appear to be scaled
The brightest observed emission line in many star-forming galaxies is the [CII] 158 micron line, making it detectable up to z~7. In order to better understand and quantify the [CII] emission as a tracer of star-formation, the theoretical ratio betwee
The [CII] fine structure transition at 158 microns is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through meter wavelengths. With the advent of ALMA and NOEMA, capable
We report the detection of 158 micron [CII] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous (L_IR ~ 10^13 L_sun) starburst galaxy at z=1.3. The line is bright, and corresponds to a fraction L_[CII]/L_FIR = 2 x 10^-3 of the fa
Our objectives are to determine the properties of the interstellar medium (ISM) and of star-formation in typical star-forming galaxies at high redshift. Following up on our previous multi-wavelength observations with HST, Spitzer, Herschel, and the P
We present, for the first time, a statistical study of [N II] 205 mciron line emission for a large sample of local luminous infrared galaxies using Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) data. Fo