ﻻ يوجد ملخص باللغة العربية
We give a new, purely coding-theoretic proof of Kochs criterion on the tetrad systems of Type II codes of length 24 using the theory of harmonic weight enumerators. This approach is inspired by Venkovs approach to the classification of the root systems of Type II lattices in R^{24}, and gives a new instance of the analogy between lattices and codes.
We prove configuration results for extremal Type II codes, analogous to the configuration results of Ozeki and of the second author for extremal Type II lattices. Specifically, we show that for $n in {8, 24, 32, 48, 56, 72, 96}$ every extremal Type I
The determination of the weight distribution of linear codes has been a fascinating problem since the very beginning of coding theory. There has been a lot of research on weight enumerators of special cases, such as self-dual codes and codes with sma
We give a new structural development of harmonic polynomials on Hamming space, and harmonic weight enumerators of binary linear codes, that parallels one approach to harmonic polynomials on Euclidean space and weighted theta functions of Euclidean la
We introduce the concept of spread of a code, and we specialize it to the case of maximum weight spectrum (MWS) codes. We classify two newly-defined sub-families of MWS codes according to their weight distributions, and completely describe their fund
A new method is used to resolve a long-standing conjecture of Niho concerning the crosscorrelation spectrum of a pair of maximum length linear recursive sequences of length $2^{2 m}-1$ with relative decimation $d=2^{m+2}-3$, where $m$ is even. The re