ﻻ يوجد ملخص باللغة العربية
We introduce the concept of spread of a code, and we specialize it to the case of maximum weight spectrum (MWS) codes. We classify two newly-defined sub-families of MWS codes according to their weight distributions, and completely describe their fundamental parameters. We focus on one of these families, the strictly compact MWS codes, proving their optimality as MWS codes and linking them to known codes.
The determination of the weight distribution of linear codes has been a fascinating problem since the very beginning of coding theory. There has been a lot of research on weight enumerators of special cases, such as self-dual codes and codes with sma
We give a new, purely coding-theoretic proof of Kochs criterion on the tetrad systems of Type II codes of length 24 using the theory of harmonic weight enumerators. This approach is inspired by Venkovs approach to the classification of the root syste
Let $G$ be a directed graph such that the in-degree of any vertex $G$ is at least one. Let also ${mathcal{tau}}: V(G)rightarrow Bbb{N}$ be an assignment of thresholds to the vertices of $G$. A subset $M$ of vertices of $G$ is called a dynamic monopol
Ahlswede and Katona (1977) posed the following isodiametric problem in Hamming spaces: For every $n$ and $1le Mle2^{n}$, determine the minimum average Hamming distance of binary codes with length $n$ and size $M$. Fu, Wei, and Yeung (2001) used linea
In this paper we consider the problem of determining the weight spectrum of q-ary codes C(3,m) associated with Grassmann varieties G(3,m). For m=6 this was done by Nogin. We derive a formula for the weight of a codeword of C(3,m), in terms of certain