ترغب بنشر مسار تعليمي؟ اضغط هنا

Configurations of Extremal Type II Codes

119   0   0.0 ( 0 )
 نشر من قبل Scott Kominers
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove configuration results for extremal Type II codes, analogous to the configuration results of Ozeki and of the second author for extremal Type II lattices. Specifically, we show that for $n in {8, 24, 32, 48, 56, 72, 96}$ every extremal Type II code of length $n$ is generated by its codewords of minimal weight. Where Ozeki and Kominers used spherical harmonics and weighted theta functions, we use discrete harmonic polynomials and harmonic weight enumerators. Along we way we introduce $tfrac12$-designs as a discrete analog of Venkovs spherical designs of the same name.



قيم البحث

اقرأ أيضاً

We give a new structural development of harmonic polynomials on Hamming space, and harmonic weight enumerators of binary linear codes, that parallels one approach to harmonic polynomials on Euclidean space and weighted theta functions of Euclidean la ttices. Namely, we use the finite-dimensional representation theory of sl_2 to derive a decomposition theorem for the spaces of discrete homogeneous polynomials in terms of the spaces of discrete harmonic polynomials, and prove a generalized MacWilliams identity for harmonic weight enumerators. We then present several applications of harmonic weight enumerators, corresponding to some uses of weighted theta functions: an equivalent characterization of t-designs, the Assmus-Mattson Theorem in the case of extremal Type II codes, and configuration results for extremal Type II codes of lengths 8, 24, 32, 48, 56, 72, and 96.
We give a new, purely coding-theoretic proof of Kochs criterion on the tetrad systems of Type II codes of length 24 using the theory of harmonic weight enumerators. This approach is inspired by Venkovs approach to the classification of the root syste ms of Type II lattices in R^{24}, and gives a new instance of the analogy between lattices and codes.
We show that if L is an extremal even unimodular lattice of rank 40r with r=1,2,3 then L is generated by its vectors of norms 4r and 4r+2. Our result is an extension of Ozekis result for the case r=1.
We show that, if L is an extremal Type II lattice of rank 40 or 80, then L is generated by its vectors of norm min(L)+2. This sharpens earlier results of Ozeki, and the second author and Abel, which showed that such lattices L are generated by their vectors of norms min(L) and min(L)+2.
We study body-and-hinge and panel-and-hinge chains in R^d, with two marked points: one on the first body, the other on the last. For a general chain, the squared distance between the marked points gives a Morse-Bott function on a torus configuration space. Maximal configurations, when the distance between the two marked points reaches a global maximum, have particularly simple geometrical characterizations. The three-dimensional case is relevant for applications to robotics and molecular structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا