ترغب بنشر مسار تعليمي؟ اضغط هنا

Solitonic fermions in the confining phase of SU(2) Yang-Mills theory

134   0   0.0 ( 0 )
 نشر من قبل Julian Moosmann
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Julian Moosmann




اسأل ChatGPT حول البحث

We consider spatial coarse-graining in statistical ensembles of non-selfintersecting and one-fold selfintersecting center-vortex loops as they emerge in the confining phase of SU(2) Yang-Mills thermodynamics. This coarse-graining is due to a noisy environment and described by a curve shrinking flow of center-vortex loops locally embedded in a two-dimensional flat plane. The renormalization-group flow of an effective `action, which is defined in purely geometric terms, is driven by the curve shrinking evolution. In the case of non-selfintersecting center-vortex loops, we observe critical behavior of the effective `action as soon as the center-vortex loops vanish from the spectrum of the confining phase due to curve shrinking. This suggest the existence of an asymptotic mass gap. An entirely unexpected behavior in the ensemble of one-fold selfintersecting center-vortex loops is connected with the spontaneous emergence of order. We speculate that the physics of planar, one-fold selfintersecting center-vortex loops to be relevant for two-dimensional systems exhibiting high-temperature superconductivity.



قيم البحث

اقرأ أيضاً

We examine the mechanical matrix model that can be derived from the SU(2) Yang-Mills light-cone field theory by restricting the gauge fields to depend on the light-cone time alone. We use Diracs generalized Hamiltonian approach. In contrast to its we ll-known instant-time counterpart the light-cone version of SU(2) Yang-Mills mechanics has in addition to the constraints, generating the SU(2) gauge transformations, the new first and second class constraints also. On account of all of these constraints a complete reduction in number of the degrees of freedom is performed. It is argued that the classical evolution of the unconstrained degrees of freedom is equivalent to a free one-dimensional particle dynamics. Considering the complex solutions to the second class constraints we show at this time that the unconstrained Hamiltonian system represents the well-known model of conformal mechanics with a ``strength of the inverse square interaction determined by the value of the gauge field spin.
By using the method of center projection the center vortex part of the gauge field is isolated and its propagator is evaluated in the center Landau gauge, which minimizes the open 3-dimensional Dirac volumes of non-trivial center links bounded by the closed 2-dimensional center vortex surfaces. The center field propagator is found to dominate the gluon propagator (in Landau gauge) in the low momentum regime and to give rise to an OPE correction to the latter of ${sqrt{sigma}}/{p^3}$.The screening mass of the center vortex field vanishes above the critical temperature of the deconfinement phase transition, which naturally explains the second order nature of this transition consistent with the vortex picture. Finally, the ghost propagator of maximal center gauge is found to be infrared finite and thus shows that the coset fields play no role for confinement.
In this paper an intrinsically non-Abelian black hole solution for the SU(2) Einstein-Yang-Mills theory in four dimensions is constructed. The gauge field of this solution has the form of a meron whereas the metric is the one of a Reissner-Nordstrom black hole in which, however, the coefficient of the $1/r^2$ term is not an integration constant. Even if the stress-energy tensor of the Yang-Mills field is spherically symmetric, the field strength of the Yang-Mills field itself is not. A remarkable consequence of this fact, which allows to distinguish the present solution from essentially Abelian configurations, is the Jackiw, Rebbi, Hasenfratz, t Hooft mechanism according to which excitations of bosonic fields moving in the background of a gauge field with this characteristic behave as Fermionic degrees of freedom.
We present a study of the effective string that describes the infrared dynamics of SU(2) Yang-Mills theory in three dimensions. By combining high-precision lattice simulation results for Polyakov-loop correlators at finite temperatures close to (and less than) the deconfinement one with the analytical constraints from renormalization-group arguments, from the exact integrability of the two-dimensional Ising model that describes the universality class of the critical point of the theory, from conformal perturbation theory, and from Lorentz invariance, we derive tight quantitative bounds on the corrections to the effective string action beyond the Nambu-Goto approximation. We show that these corrections are compatible with the predictions derived from a bootstrap analysis of the effective string theory, but are inconsistent with the axionic string ansatz.
132 - D.G. Pak , Takuya Tsukioka 2020
Color confinement is the most puzzling phenomenon in the theory of strong interaction based on a quantum SU(3) Yang-Mills theory. The origin of color confinement supposed to be intimately related to non-perturbative features of the non-Abelian gauge theory, and touches very foundations of the theory. We revise basic concepts underlying QCD concentrating mainly on concepts of gluons and quarks and color structure of quantum states. Our main idea is that a Weyl symmetry is the only color symmetry which determines all color attributes of quantum states and physical observables. We construct an ansatz for classical Weyl symmetric dynamical solutions in SU(3) Yang-Mills theory which describe one particle color singlet quantum states for gluons and quarks. Abelian Weyl symmetric solutions provide microscopic structure of a color invariant vacuum and vacuum gluon condensates. This resolves a problem of existence of a gauge invariant and stable vacuum in QCD. Generalization of our consideration to SU(N) (N=4,5) Yang-Mills theory implies that the color confinement phase is possible only in SU(3) Yang-Mills theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا