ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchy of QM SUSYs on a Bounded Domain

42   0   0.0 ( 0 )
 نشر من قبل Satoshi Ohya
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We systematically formulate a hierarchy of isospectral Hamiltonians in one-dimensional supersymmetric quantum mechanics on an interval and on a circle, in which two successive Hamiltonians form N=2 supersymmetry. We find that boundary conditions compatible with supersymmetry are severely restricted. In the case of an interval, a hierarchy of, at most, three isospectral Hamiltonians is possible with unique boundary conditions, while in the case of a circle an infinite tower of isospectral Hamiltonians can be constructed with two-parameter family of boundary conditions.

قيم البحث

اقرأ أيضاً

Based on the nonperturbative analysis, we show that the classical motion of harmonic oscillator derived from the deformed QM is manifestly in contradiction with observations. For this reason, we take an alternate way for estimating the effect and dis cuss its possible observational manifestations in macrophysics.
We test the bootstrap approach for determining the spectrum of one dimensional Hamiltonians. In this paper we focus on problems that have a two parameter search space in the bootstrap approach: the double well and a periodic potential associated to t he Mathieu equation. For the double well, we compare the energies with contributions from perturbative and non-perturbative results, finding good agreement. For the periodic potentials, we notice that the bootstrap approach gives the band structure of the periodic potential, but it has trouble finding the quasi-momentum of the system. To make further progress on the dispersion relation of the bands, new techniques are needed.
For a Pfaffian point process we show that its Palm measures, its normalised compositions with multiplicative functionals, and its conditional measures with respect to fixing the configuration in a bounded subset are Pfaffian point processes whose kernels we find explicitly.
We focus on the geometrical reformulation of free higher spin supermultiplets in $4rm{D},~mathcal{N}=1$ flat superspace. We find that there is a de Wit-Freedman like hierarchy of superconnections with simple gauge transformations. The requirement for sensible free equations of motion imposes constraints on the gauge parameter superfields. Unlike the nonsupersymmetric case, we find several different constraints that can decouple the higher superconnections. By lifting these constraints nongeometrically via compensators we recover all known descriptions of arbitrary integer and half-integer gauge supermultiplets. In the constrained formulation we find a new description of half-integer supermultiplets, generalizing the new-minimal and virial formulations of linearized supergravity to higher spins. However this description can be formulated using compensators. The various descriptions can be labeled as geometrical or nongeometrical if the equations of motion can be expressed purely in terms of superconnections or not.
In this work, we derive a quantum information theoretic quantity similar to the Leggett-Garg inequality, which can be defined in terms of neutrino transition probabilities. For the case of $ u_mu to u_e/bar{ u}_mutobar{ u}_e$ transitions, this quant ity is sensitive to CP violating effects as well as the neutrino mass-hierarchy, namely which neutrino mass eigenstate is heavier than the other ones. The violation of the inequality for this quantity shows an interesting dependence on mass-hierarchy. For normal (inverted) mass-hierarchy, it is significant for $ u_mu to u_e$ ($bar{ u}_mu to bar{ u}_e$) transitions. This is applied to the two ongoing accelerator experiments T$2$K and NO$ u$A as well as the future experiment DUNE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا