ترغب بنشر مسار تعليمي؟ اضغط هنا

Macroscopic detection of deformed QM by the harmonic oscillator

40   0   0.0 ( 0 )
 نشر من قبل Michael Maziashvili
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the nonperturbative analysis, we show that the classical motion of harmonic oscillator derived from the deformed QM is manifestly in contradiction with observations. For this reason, we take an alternate way for estimating the effect and discuss its possible observational manifestations in macrophysics.

قيم البحث

اقرأ أيضاً

A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated to a nonzero minimal uncertainty in position measurements, which is encoded in deformed commut ation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters are roughly extrapolated from indirect measurements. As recently proposed, low-energy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high quality factor micro- and nano-oscillators, spanning a wide range of masses around the Planck mass $m_{mathrm{P}}$ (${approx 22,mumathrm{g}}$), and compare it with a model of deformed dynamics. Previous limits to the parameters quantifying the commutator deformation are substantially lowered.
Using a particular Hilbert space representation of minimum-length deformed quantum mechanics, we show that the resolution of the wave-function singularities for strongly attractive potentials, as well as cosmological singularity in the framework of a minisuperspace approximation, is uniquely tied to the fact that this sort of quantum mechanics implies the reduced Hilbert space of state-vectors consisting of the functions nonlocalizable beneath the Planck length. (Corrections to the Hamiltonian do not provide such an universal mechanism for avoiding singularities.) Following this discussion, as a next step we take a critical view of the meaning of wave-function in such a quantum theory. For this reason we focus on the construction of current vector and the subsequent continuity equation. Some issues gained in the framework of this discussion are then considered in the context of field theory. Finally, we discuss the classical limit of the minimum-length deformed quantum mechanics and its dramatic consequences.
108 - M.C. Baldiotti , R. Fresneda , 2010
We return to the description of the damped harmonic oscillator by means of a closed quantum theory with a general assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model recently proposed by one of the authors. W e show the local equivalence between the two models and argue that latter has better high energy behavior and is naturally connected to existing open-quantum-systems approaches.
We systematically formulate a hierarchy of isospectral Hamiltonians in one-dimensional supersymmetric quantum mechanics on an interval and on a circle, in which two successive Hamiltonians form N=2 supersymmetry. We find that boundary conditions comp atible with supersymmetry are severely restricted. In the case of an interval, a hierarchy of, at most, three isospectral Hamiltonians is possible with unique boundary conditions, while in the case of a circle an infinite tower of isospectral Hamiltonians can be constructed with two-parameter family of boundary conditions.
We derive and spell out the structure constants of the $mathbb{Z}_2$-graded algebra $mathfrak{shs}[lambda],$ by using deformed-oscillators techniques in $Aq(2; u),$, the universal enveloping algebra of the Wigner-deformed Heisenberg algebra in 2 dime nsions. The use of Weyl ordering of the deformed oscillators is made throughout the paper, via the symbols of the operators and the corresponding associative, non-commutative star product. The deformed oscillator construction was used by Vasiliev in order to construct the higher spin algebras in three spacetime dimensions. We derive an expression for the structure constants of $mathfrak{shs}[lambda],$ and show that they must obey a recurrence relation as a consequence of the associativity of the star product. We solve this condition and show that the $mathfrak{hs}[lambda],$ structure constants are given by those postulated by Pope, Romans and Shen for the Lone Star product.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا