ترغب بنشر مسار تعليمي؟ اضغط هنا

Bootstrapping More QM Systems

163   0   0.0 ( 0 )
 نشر من قبل David Berenstein
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We test the bootstrap approach for determining the spectrum of one dimensional Hamiltonians. In this paper we focus on problems that have a two parameter search space in the bootstrap approach: the double well and a periodic potential associated to the Mathieu equation. For the double well, we compare the energies with contributions from perturbative and non-perturbative results, finding good agreement. For the periodic potentials, we notice that the bootstrap approach gives the band structure of the periodic potential, but it has trouble finding the quasi-momentum of the system. To make further progress on the dispersion relation of the bands, new techniques are needed.

قيم البحث

اقرأ أيضاً

In this paper, we discuss the gluon propagator in the linear covariant gauges in $D=2,3,4$ Euclidean dimensions. Non-perturbative effects are taken into account via the so-called Refined Gribov-Zwanziger framework. We point out that, as in the Landau and maximal Abelian gauges, for $D=3,4$, the gluon propagator displays a massive (decoupling) behaviour, while for $D=2$, a scaling one emerges. All results are discussed in a setup that respects the Becchi-Rouet-Stora-Tyutin (BRST) symmetry, through a recently introduced non-perturbative BRST transformation. We also propose a minimizing functional that could be used to construct a lattice version of our non-perturbative definition of the linear covariant gauge.
In PRL 116 (2016) no.6, 062001, the space of planar pentagon functions that describes all two-loop on-shell five-particle scattering amplitudes was introduced. In the present paper we present a natural extension of this space to non-planar pentagon f unctions. This provides the basis for our pentagon bootstrap program. We classify the relevant functions up to weight four, which is relevant for two-loop scattering amplitudes. We constrain the first entry of the symbol of the functions using information on branch cuts. Drawing on an analogy from the planar case, we introduce a conjectural second-entry condition on the symbol. We then show that the information on the function space, when complemented with some additional insights, can be used to efficiently bootstrap individual Feynman integrals. The extra information is read off of Mellin-Barnes representations of the integrals, either by evaluating simple asymptotic limits, or by taking discontinuities in the kinematic variables. We use this method to evaluate the symbols of two non-trivial non-planar five-particle integrals, up to and including the finite part.
We present additional observations to previous studies on the infrared (IR) renormalon in $SU(N)$ QCD(adj.), the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary condition. First, we show that, for arbitrary finite~$N$, a logarithmic factor in the vacuum polarization of the photon (the gauge boson associated with the Cartan generators of~$SU(N)$) disappears under the $S^1$~compactification. Since the IR renormalon is attributed to the presence of this logarithmic factor, it is concluded that there is no IR renormalon in this system with finite~$N$. This result generalizes the observation made by Anber and~Sulejmanpasic [J. High Energy Phys. textbf{1501}, 139 (2015)] for $N=2$ and~$3$ to arbitrary finite~$N$. Next, we point out that, although renormalon ambiguities do not appear through the Borel procedure in this system, an ambiguity appears in an alternative resummation procedure in which a resummed quantity is given by a momentum integration where the inverse of the vacuum polarization is included as the integrand. Such an ambiguity is caused by a simple zero at non-zero momentum of the vacuum polarization. Under the decompactification~$Rtoinfty$, where $R$ is the radius of the $S^1$, this ambiguity in the momentum integration smoothly reduces to the IR renormalon ambiguity in~$mathbb{R}^4$. We term this ambiguity in the momentum integration renormalon precursor. The emergence of the IR renormalon ambiguity in~$mathbb{R}^4$ under the decompactification can be naturally understood with this notion.
Using a particular Hilbert space representation of minimum-length deformed quantum mechanics, we show that the resolution of the wave-function singularities for strongly attractive potentials, as well as cosmological singularity in the framework of a minisuperspace approximation, is uniquely tied to the fact that this sort of quantum mechanics implies the reduced Hilbert space of state-vectors consisting of the functions nonlocalizable beneath the Planck length. (Corrections to the Hamiltonian do not provide such an universal mechanism for avoiding singularities.) Following this discussion, as a next step we take a critical view of the meaning of wave-function in such a quantum theory. For this reason we focus on the construction of current vector and the subsequent continuity equation. Some issues gained in the framework of this discussion are then considered in the context of field theory. Finally, we discuss the classical limit of the minimum-length deformed quantum mechanics and its dramatic consequences.
We study the conformal bootstrap for a 4-point function of fermions $langlepsipsipsipsirangle$ in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these result s, we find general bounds on the dimensions of operators appearing in the $psi times psi$ OPE, and also on the central charge $C_T$. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large $N$. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا