خيارات الحقيقية للجداول الزمنية للمشاريع (ROPS) لديها ثلاث غلافات عينة/تحسين متكررة. غلاف تحسين تطبيقي Adaptive Simulated Annealing (ASA) يحسن معلمات الخطط الاستراتيجية التي تحتوي على مشاريع متعددة تحتوي على مهام مرتبة. وغلاف وسط يعين توزيعات احتمالية لمدة المهام. وغلاف داخلي يعين توزيعات احتمالية لتكاليف المهام. PATHTREE يستخدم لتطوير الخيارات على الجداول الزمنية. والخوارزميات المستخدمة للتداول في أبعاد المخاطر (TRD) يتم تطبيقها لتطوير تحليل مخاطر نسبي بين المشاريع.
Real Options for Project Schedules (ROPS) has three recursive sampling/optimization shells. An outer Adaptive Simulated Annealing (ASA) optimization shell optimizes parameters of strategic Plans containing multiple Projects containing ordered Tasks. A middle shell samples probability distributions of durations of Tasks. An inner shell samples probability distributions of costs of Tasks. PATHTREE is used to develop options on schedules.. Algorithms used for Trading in Risk Dimensions (TRD) are applied to develop a relative risk analysis among projects.
In this paper we present a simple, yet typical simulation in statistical physics, consisting of large scale Monte Carlo simulations followed by an involved statistical analysis of the results. The purpose is to provide an example publication to explo
In recent years Java has matured to a stable easy-to-use language with the flexibility of an interpreter (for reflection etc.) but the performance and type checking of a compiled language. When we started using Java for astronomical applications arou
We introduce a new approach to incorporate uncertainty into the decision to invest in a commodity reserve. The investment is an irreversible one-off capital expenditure, after which the investor receives a stream of cashflow from extracting the commo
We present the AMPS algorithm, a finite element solution method that combines principal submatrix updates and Schur complement techniques, well-suited for interactive simulations of deformation and cutting of finite element meshes. Our approach featu
New annealing schedules for quantum annealing are proposed based on the adiabatic theorem. These schedules exhibit faster decrease of the excitation probability than a linear schedule. To derive this conclusion, the asymptotic form of the excitation