ترغب بنشر مسار تعليمي؟ اضغط هنا

AMPS: A Real-time Mesh Cutting Algorithm for Surgical Simulations

107   0   0.0 ( 0 )
 نشر من قبل Yu-Hong Yeung
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the AMPS algorithm, a finite element solution method that combines principal submatrix updates and Schur complement techniques, well-suited for interactive simulations of deformation and cutting of finite element meshes. Our approach features real-time solutions to the updated stiffness matrix systems to account for interactive changes in mesh connectivity and boundary conditions. Updates are accomplished by an augmented matrix formulation of the stiffness equations to maintain its consistency with changes to the underlying model without refactorization at each timestep. As changes accumulate over multiple simulation timesteps, the augmented solution algorithm enables tens or hundreds of updates per second. Acceleration schemes that exploit sparsity, memoization and parallelization lead to the updates being computed in real-time. The complexity analysis and experimental results for this method demonstrate that it scales linearly with the problem size. Results for cutting and deformation of 3D elastic models are reported for meshes with node counts up to 50,000, and involve models of astigmatism surgery and the brain.



قيم البحث

اقرأ أيضاً

54 - Huu Phuoc Bui 2016
Objective: To present the first real-time a posteriori error-driven adaptive finite element approach for real-time simulation and to demonstrate the method on a needle insertion problem. Methods: We use corotational elasticity and a frictional needle /tissue interaction model. The problem is solved using finite elements within SOFA. The refinement strategy relies upon a hexahedron-based finite element method, combined with a posteriori error estimation driven local $h$-refinement, for simulating soft tissue deformation. Results: We control the local and global error level in the mechanical fields (e.g. displacement or stresses) during the simulation. We show the convergence of the algorithm on academic examples, and demonstrate its practical usability on a percutaneous procedure involving needle insertion in a liver. For the latter case, we compare the force displacement curves obtained from the proposed adaptive algorithm with that obtained from a uniform refinement approach. Conclusions: Error control guarantees that a tolerable error level is not exceeded during the simulations. Local mesh refinement accelerates simulations. Significance: Our work provides a first step to discriminate between discretization error and modeling error by providing a robust quantification of discretization error during simulations.
The simulation of electrical discharges has been attracting a great deal of attention. In such simulations, the electric field computation dominates the computational time. In this paper, we propose a fast tree algorithm that helps to reduce the time complexity from $O(N^2)$ (from using direct summation) to $O(Nlog N)$. The implementation details are discussed and the time complexity is analyzed. A rigorous error estimation shows the error of the tree algorithm decays exponentially with the number of truncation terms and can be controlled adaptively. Numerical examples are presented to validate the accuracy and efficiency of the algorithm.
We present AMPS, an augmented matrix approach to update the solution to a linear system of equations when the matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, whe re operators need to perform N - k contingency analysis, i.e., determine the state of the system when exactly k links from N fail. Our algorithms augment the matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. We analyze the time complexity of both algorithms, and show that it is bounded by the number of nonzeros in a subset of the columns of the Cholesky factor that are selected by the nonzeros in the sparse right-hand-side vector. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing N - k contingency analysis on a 778 thousand bus grid, updating a solution with k = 20 elements in 16 milliseconds on an Intel Xeon processor.
This paper presents a dynamic constraint formulation to provide protective virtual fixtures of 3D anatomical structures from polygon mesh representations. The proposed approach can anisotropically limit the tool motion of surgical robots without any assumption of the local anatomical shape close to the tool. Using a bounded search strategy and Principle Directed tree, the proposed system can run efficiently at 180 Hz for a mesh object containing 989,376 triangles and 493,460 vertices. The proposed algorithm has been validated in both simulation and skull cutting experiments. The skull cutting experiment setup uses a novel piezoelectric bone cutting tool designed for the da Vinci research kit. The result shows that the virtual fixture assisted teleoperation has statistically significant improvements in the cutting path accuracy and penetration depth control. The code has been made publicly available at https://github.com/mli0603/PolygonMeshVirtualFixture.
We propose a concise approximate description, and a method for efficiently obtaining this description, via adaptive random sampling of the performance (running time, memory consumption, or any other profileable numerical quantity) of a given algorith m on some low-dimensional rectangular grid of inputs. The formal correctness is proven under reasonable assumptions on the algorithm under consideration; and the approachs practical benefit is demonstrated by predicting for which observer positions and viewing directions an occlusion culling algorithm yields a net performance benefit or loss compared to a simple brute force renderer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا