ﻻ يوجد ملخص باللغة العربية
In this paper we present a simple, yet typical simulation in statistical physics, consisting of large scale Monte Carlo simulations followed by an involved statistical analysis of the results. The purpose is to provide an example publication to explore tools for writing reproducible papers. The simulation estimates the critical temperature where the Ising model on the square lattice becomes magnetic to be Tc /J = 2.26934(6) using a finite size scaling analysis of the crossing points of Binder cumulants. We provide a virtual machine which can be used to reproduce all figures and results.
The partition function of the square lattice Ising model on the rectangle with open boundary conditions in both directions is calculated exactly for arbitrary system size $Ltimes M$ and temperature. We start with the dimer method of Kasteleyn, McCoy
This paper deals with $tilde{chi}^{(6)}$, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for $tilde{chi}^{(6)}$. The length of the series is suffi
We calculate very long low- and high-temperature series for the susceptibility $chi$ of the square lattice Ising model as well as very long series for the five-particle contribution $chi^{(5)}$ and six-particle contribution $chi^{(6)}$. These calcula
We study the class of non-holonomic power series with integer coefficients that reduce, modulo primes, or powers of primes, to algebraic functions. In particular we try to determine whether the susceptibility of the square-lattice Ising model belongs
Based on the results published recently [J. Phys. A: Math. Theor. 50, 065201 (2017)], the universal finite-size contributions to the free energy of the square lattice Ising model on the $Ltimes M$ rectangle, with open boundary conditions in both dire