ترغب بنشر مسار تعليمي؟ اضغط هنا

Technical Uncertainty in Real Options with Learning

75   0   0.0 ( 0 )
 نشر من قبل Ali Al-Aradi
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new approach to incorporate uncertainty into the decision to invest in a commodity reserve. The investment is an irreversible one-off capital expenditure, after which the investor receives a stream of cashflow from extracting the commodity and selling it on the spot market. The investor is exposed to price uncertainty and uncertainty in the amount of available resources in the reserves (i.e. technical uncertainty). She does, however, learn about the reserve levels through time, which is a key determinant in the decision to invest. To model the reserve level uncertainty and how she learns about the estimates of the commodity in the reserve, we adopt a continuous-time Markov chain model to value the option to invest in the reserve and investigate the value that learning has prior to investment.



قيم البحث

اقرأ أيضاً

The main objective of this paper is to present an algorithm of pricing perpetual American put options with asset-dependent discounting. The value function of such an instrument can be described as begin{equation*} V^{omega}_{text{A}^{text{Put}}}(s) = sup_{tauinmathcal{T}} mathbb{E}_{s}[e^{-int_0^tau omega(S_w) dw} (K-S_tau)^{+}], end{equation*} where $mathcal{T}$ is a family of stopping times, $omega$ is a discount function and $mathbb{E}$ is an expectation taken with respect to a martingale measure. Moreover, we assume that the asset price process $S_t$ is a geometric Levy process with negative exponential jumps, i.e. $S_t = s e^{zeta t + sigma B_t - sum_{i=1}^{N_t} Y_i}$. The asset-dependent discounting is reflected in the $omega$ function, so this approach is a generalisation of the classic case when $omega$ is constant. It turns out that under certain conditions on the $omega$ function, the value function $V^{omega}_{text{A}^{text{Put}}}(s)$ is convex and can be represented in a closed form; see Al-Hadad and Palmowski (2021). We provide an option pricing algorithm in this scenario and we present exact calculations for the particular choices of $omega$ such that $V^{omega}_{text{A}^{text{Put}}}(s)$ takes a simplified form.
We call a given American option representable if there exists a European claim which dominates the American payoff at any time and such that the values of the two options coincide in the continuation region of the American option. This concept has in teresting implications from a probabilistic, analytic, financial, and numeric point of view. Relying on methods from Jourdain and Martini (2001, 2002), Chrsitensen (2014) and convex duality, we make a first step towards verifying representability of American options.
196 - Erhan Bayraktar , Gu Wang 2014
With model uncertainty characterized by a convex, possibly non-dominated set of probability measures, the agent minimizes the cost of hedging a path dependent contingent claim with given expected success ratio, in a discrete-time, semi-static market of stocks and options. Based on duality results which link quantile hedging to a randomized composite hypothesis test, an arbitrage-free discretization of the market is proposed as an approximation. The discretized market has a dominating measure, which guarantees the existence of the optimal hedging strategy and helps numerical calculation of the quantile hedging price. As the discretization becomes finer, the approximate quantile hedging price converges and the hedging strategy is asymptotically optimal in the original market.
Developments in finance industry and academic research has led to innovative financial products. This paper presents an alternative approach to price American options. Our approach utilizes famous cite{heath1992bond} (HJM) technique to calculate Amer ican option written on an asset. Originally, HJM forward modeling approach was introduced as an alternative approach to bond pricing in fixed income market. Since then, cite{schweizer2008term} and cite{carmona2008infinite} extended HJM forward modeling approach to equity market by capturing dynamic nature of volatility. They modeled the term structure of volatility, which is commonly observed in the market place as opposed to constant volatility assumption under Black - Scholes framework. Using this approach, we propose an alternative value function, a stopping criteria and a stopping time. We give an example of how to price American put option using proposed methodology.
We consider stochastic volatility models under parameter uncertainty and investigate how model derived prices of European options are affected. We let the pricing parameters evolve dynamically in time within a specified region, and formalise the prob lem as a control problem where the control acts on the parameters to maximise/minimise the option value. Through a dual representation with backward stochastic differential equations, we obtain explicit equations for Hestons model and investigate several numerical solutions thereof. In an empirical study, we apply our results to market data from the S&P 500 index where the model is estimated to historical asset prices. We find that the conservative model-prices cover 98% of the considered market-prices for a set of European call options.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا