ترغب بنشر مسار تعليمي؟ اضغط هنا

موقع الذكي لمصادر الانبعاث الصوتي النشطة متزامناً: الجزء الأول

Intelligent location of simultaneously active acoustic emission sources: Part I

156   0   0.0 ( 0 )
 نشر من قبل Igor Grabec
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The intelligent acoustic emission locator is described in Part I, while Part II discusses blind source separation, time delay estimation and location of two simultaneously active continuous acoustic emission sources. The location of acoustic emission on complicated aircraft frame structures is a difficult problem of non-destructive testing. This article describes an intelligent acoustic emission source locator. The intelligent locator comprises a sensor antenna and a general regression neural network, which solves the location problem based on learning from examples. Locator performance was tested on different test specimens. Tests have shown that the accuracy of location depends on sound velocity and attenuation in the specimen, the dimensions of the tested area, and the properties of stored data. The location accuracy achieved by the intelligent locator is comparable to that obtained by the conventional triangulation method, while the applicability of the intelligent locator is more general since analysis of sonic ray paths is avoided. This is a promising method for non-destructive testing of aircraft frame structures by the acoustic emission method.

قيم البحث

اقرأ أيضاً

210 - T. Kosel , I. Grabec 2007
Part I describes an intelligent acoustic emission locator, while Part II discusses blind source separation, time delay estimation and location of two continuous acoustic emission sources. Acoustic emission (AE) analysis is used for characterization and location of developing defects in materials. AE sources often generate a mixture of various statistically independent signals. A difficult problem of AE analysis is separation and characterization of signal components when the signals from various sources and the mode of mixing are unknown. Recently, blind source separation (BSS) by independent component analysis (ICA) has been used to solve these problems. The purpose of this paper is to demonstrate the applicability of ICA to locate two independent simultaneously active acoustic emission sources on an aluminum band specimen. The method is promising for non-destructive testing of aircraft frame structures by acoustic emission analysis.
Spiking Neural Networks (SNNs) are biologically inspired machine learning models that build on dynamic neuronal models processing binary and sparse spiking signals in an event-driven, online, fashion. SNNs can be implemented on neuromorphic computing platforms that are emerging as energy-efficient co-processors for learning and inference. This is the first of a series of three papers that introduce SNNs to an audience of engineers by focusing on models, algorithms, and applications. In this first paper, we first cover neural models used for conventional Artificial Neural Networks (ANNs) and SNNs. Then, we review learning algorithms and applications for SNNs that aim at mimicking the functionality of ANNs by detecting or generating spatial patterns in rate-encoded spiking signals. We specifically discuss ANN-to-SNN conversion and neural sampling. Finally, we validate the capabilities of SNNs for detecting and generating spatial patterns through experiments.
System design tools are often only available as blackboxes with complex nonlinear relationships between inputs and outputs. Blackboxes typically run in the forward direction: for a given design as input they compute an output representing system beha vior. Most cannot be run in reverse to produce an input from requirements on output. Thus, finding a design satisfying a requirement is often a trial-and-error process without assurance of optimality. Finding designs concurrently satisfying multiple requirements is harder because designs satisfying individual requirements may conflict with each other. Compounding the hardness are the facts that blackbox evaluations can be expensive and sometimes fail to produce an output due to non-convergence of underlying numerical algorithms. This paper presents CNMA (Constrained optimization with Neural networks, MILP solvers and Active Learning), a new optimization method for blackboxes. It is conservative in the number of blackbox evaluations. Any designs it finds are guaranteed to satisfy all requirements. It is resilient to the failure of blackboxes to compute outputs. It tries to sample only the part of the design space relevant to solving the design problem, leveraging the power of neural networks, MILPs, and a new learning-from-failure feedback loop. The paper also presents parallel CNMA that improves the efficiency and quality of solutions over the sequential version, and tries to steer it away from local optima. CNMAs performance is evaluated for seven nonlinear design problems of 8 (2 problems), 10, 15, 36 and 60 real-valued dimensions and one with 186 binary dimensions. It is shown that CNMA improves the performance of stable, off-the-shelf implementations of Bayesian Optimization and Nelder Mead and Random Search by 1%-87% for a given fixed time and function evaluation budget. Note, that these implementations did not always return solutions.
169 - Burak Kakillioglu , Yantao Lu , 2018
The choice of parameters, and the design of the network architecture are important factors affecting the performance of deep neural networks. However, there has not been much work on developing an established and systematic way of building the struct ure and choosing the parameters of a neural network, and this task heavily depends on trial and error and empirical results. Considering that there are many design and parameter choices, such as the number of neurons in each layer, the type of activation function, the choice of using drop out or not, it is very hard to cover every configuration, and find the optimal structure. In this paper, we propose a novel and systematic method that autonomously and simultaneously optimizes multiple parameters of any given deep neural network by using a generative adversarial network (GAN). In our proposed approach, two different models compete and improve each other progressively with a GAN-based strategy. Our proposed approach can be used to autonomously refine the parameters, and improve the accuracy of different deep neural network architectures. Without loss of generality, the proposed method has been tested with three different neural network architectures, and three very different datasets and applications. The results show that the presented approach can simultaneously and successfully optimize multiple neural network parameters, and achieve increased accuracy in all three scenarios.
This paper introduces two ongoing research projects which seek to apply computer modelling techniques in order to simulate human behaviour within organisations. Previous research in other disciplines has suggested that complex social behaviours are g overned by relatively simple rules which, when identified, can be used to accurately model such processes using computer technology. The broad objective of our research is to develop a similar capability within organisational psychology.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا