ﻻ يوجد ملخص باللغة العربية
The O(n) spin model in two dimensions may equivalently be formulated as a loop model, and then mapped to a height model which is conjectured to flow under the renormalization group to a conformal field theory (CFT). At the critical point, the order n terms in the partition function and correlation functions describe single self-avoiding loops. We investigate the ensemble of these self-avoiding loops using twist operators, which count loops which wind non-trivially around them with a factor -1. These turn out to have level two null states and hence their correlators satisfy a set of partial differential equations. We show that partly-connected parts of the four point function count the expected number of loops which separate one pair of points from the other pair, and find an explicit expression for this. We argue that the differential equation satisfied by these expectation values should have an interpretation in terms of a stochastic(Schramm)-Loewner evolution (SLE_kappa) process with kappa=6. The two point function in a simply connected domain satisfies a closely related set of equations. We solve these and hence calculate the expected number of single loops which separate both points from the boundary.
Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with
We consider a self-avoiding walk model of polymer adsorption where the adsorbed polymer can be desorbed by the application of a force. In this paper the force is applied normal to the surface at the last vertex of the walk. We prove that the appropri
Quantum mechanics can be formulated in terms of phase-space functions, according to Wigners approach. A generalization of this approach consists in replacing the density operators of the standard formulation with suitable functions, the so-called gen
This is the second of two papers on the end-to-end distance of a weakly self-repelling walk on a four dimensional hierarchical lattice. It completes the proof that the expected value grows as a constant times sqrt{T} log^{1/8}T (1+O((log log T)/log T
By using the self-dual Yang-Mills (SDYM) equation as an example, we study a method for relating symmetries and recursion operators of two partial differential equations connected to each other by a non-auto-Backlund transformation. We prove the Lie-a