ترغب بنشر مسار تعليمي؟ اضغط هنا

Pentacene islands grown on ultra-thin SiO2

167   0   0.0 ( 0 )
 نشر من قبل Brad Conrad
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-thin oxide (UTO) films were grown on Si(111) in ultrahigh vacuum at room temperature and characterized by scanning tunneling microscopy. The ultra-thin oxide films were then used as substrates for room temperature growth of pentacene. The apparent height of the first layer is 1.57 +/- 0.05 nm, indicating standing up pentacene grains in the thin-film phase were formed. Pentacene is molecularly resolved in the second and subsequent molecular layers. The measured in-plane unit cell for the pentacene (001) plane (ab plane) is a=0.76+/-0.01 nm, b=0.59+/-0.01 nm, and gamma=87.5+/-0.4 degrees. The films are unperturbed by the UTOs short-range spatial variation in tunneling probability, and reduce its corresponding effective roughness and correlation exponent with increasing thickness. The pentacene surface morphology follows that of the UTO substrate, preserving step structure, the long range surface rms roughness of ~0.1 nm, and the structural correlation exponent of ~1.



قيم البحث

اقرأ أيضاً

Here were report a study of picene nano-cristalline thin films doped with pentacene molecules. The thin films were grown by supersonic molecular beam deposition with a doping concentration that ranges between less than one molecules of pentacene ever y 104 picene molecules up to about one molecule of pentacene every 102 of picene. Morphology and opto-electronic properties of the films were studied as a function of the concentration of dopants. The optical response of the picene films, characterized by absorption, steady-state and time-resolved photoluminescence measurements, changes dramatically after the doping with pentacene. An efficient energy transfer from the picene host matrix to the pentacene guest molecules was observed giving rise to an intense photoluminescence coming out from pentacene. This efficient mechanism opens the possibility to exploit applications where the excitonic states of the guest component, pentacene, are of major interest such as MASER. The observed mechanism could also serve as prototypical system for the study of the photophysics of host guest systems based on different phenacenes and acenes.
We present a scanning tunneling microscopy (STM) study of native defects in graphene islands grown by ultra-high vacuum (UHV) decomposition of ethylene on Cu(111). We characterize these defects through a survey of their apparent heights, atomic-resol ution imaging, and detailed tunneling spectroscopy. Bright defects that occur only in graphene regions are identified as C site point defects in the graphene lattice and are most likely single C vacancies. Dark defect types are observed in both graphene and Cu regions, and are likely point defects in the Cu surface. We also present data showing the importance of bias and tip termination to the appearance of the defects in STM images and the ability to achieve atomic resolution. Finally, we present tunneling spectroscopy measurements probing the influence of point defects on the local electronic landscape of graphene islands.
The thermal deposition and transfer Printing method had been used to produce pentacene thin-films on SiO2/Si and plastic substrates (PMMA and PVP), respectively. X-ray diffraction patterns of pentacene thin films showed reflections associated with hi ghly ordered polycrystalline films and a coexistence of two polymorph phases classified by their d-spacing, d(001): 14.4 and 15.4 A.The dependence of the c-axis correlation length and the phase fraction on the film thickness and printing temperature were measured. A transition from the 15.4 A phase towards 14.4 A phase was also observed with increasing film thickness. An increase in the c-axis correlation length of approximately 12% ~16% was observed for Pn films transfer printed onto a PMMA coated PET substrate at 100~120 C as compared to as-grown Pn films on SiO2/Si substrates. The transfer printing method is shown to be an attractive for the fabrication of pentacene thin-film transistors on flexible substrates partly because of the resulting improvement in the quality of the pentacene film.
Pentacenequinone (PnQ) impurities have been introduced into a pentacene source material at number densities from 0.001 to 0.474 to quantify the relative effects of impurity content and grain boundary structure on transport in pentacene thin-film tran sistors. Atomic force microscopy (AFM) and electrical measurements of top-contact pentacene thin-film transistors have been employed to directly correlate initial structure and final film structures, with the device mobility as a function of added impurity content. The results reveal a factor four decrease in mobility without significant changes in film morphology for source PnQ number fractions below ~0.008. For these low concentrations, the impurity thus directly influences transport, either as homogeneously distributed defects or by concentration at the otherwise-unchanged grain boundaries. For larger impurity concentrations, the continuing strong decrease in mobility is correlated with decreasing grain size, indicating an impurity-induced increase in the nucleation of grains during early stages of film growth.
Using high-resolution angle-resolved photoemission spectroscopy, the electronic structure near the Fermi level and the topological property of the Bi(111) films grown on the Bi$_2$Te$_3$(111) substrate were studied. Very different from the bulk Bi, w e found another surface band near the $bar{M}$ point besides the two well-known surface bands on the Bi(111) surface. With this new surface band, the bulk valence band and the bulk conduction band of Bi can be connected by the surface states. Our band mapping revealed odd number of Fermi crossings of the surface bands, which provided a direct experimental signature that Bi(111) thin films of a certain thickness on the Bi$_2$Te$_3$(111) substrate can be topologically nontrivial in three dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا