ﻻ يوجد ملخص باللغة العربية
Ultra-thin oxide (UTO) films were grown on Si(111) in ultrahigh vacuum at room temperature and characterized by scanning tunneling microscopy. The ultra-thin oxide films were then used as substrates for room temperature growth of pentacene. The apparent height of the first layer is 1.57 +/- 0.05 nm, indicating standing up pentacene grains in the thin-film phase were formed. Pentacene is molecularly resolved in the second and subsequent molecular layers. The measured in-plane unit cell for the pentacene (001) plane (ab plane) is a=0.76+/-0.01 nm, b=0.59+/-0.01 nm, and gamma=87.5+/-0.4 degrees. The films are unperturbed by the UTOs short-range spatial variation in tunneling probability, and reduce its corresponding effective roughness and correlation exponent with increasing thickness. The pentacene surface morphology follows that of the UTO substrate, preserving step structure, the long range surface rms roughness of ~0.1 nm, and the structural correlation exponent of ~1.
Here were report a study of picene nano-cristalline thin films doped with pentacene molecules. The thin films were grown by supersonic molecular beam deposition with a doping concentration that ranges between less than one molecules of pentacene ever
We present a scanning tunneling microscopy (STM) study of native defects in graphene islands grown by ultra-high vacuum (UHV) decomposition of ethylene on Cu(111). We characterize these defects through a survey of their apparent heights, atomic-resol
The thermal deposition and transfer Printing method had been used to produce pentacene thin-films on SiO2/Si and plastic substrates (PMMA and PVP), respectively. X-ray diffraction patterns of pentacene thin films showed reflections associated with hi
Pentacenequinone (PnQ) impurities have been introduced into a pentacene source material at number densities from 0.001 to 0.474 to quantify the relative effects of impurity content and grain boundary structure on transport in pentacene thin-film tran
Using high-resolution angle-resolved photoemission spectroscopy, the electronic structure near the Fermi level and the topological property of the Bi(111) films grown on the Bi$_2$Te$_3$(111) substrate were studied. Very different from the bulk Bi, w