ﻻ يوجد ملخص باللغة العربية
Here were report a study of picene nano-cristalline thin films doped with pentacene molecules. The thin films were grown by supersonic molecular beam deposition with a doping concentration that ranges between less than one molecules of pentacene every 104 picene molecules up to about one molecule of pentacene every 102 of picene. Morphology and opto-electronic properties of the films were studied as a function of the concentration of dopants. The optical response of the picene films, characterized by absorption, steady-state and time-resolved photoluminescence measurements, changes dramatically after the doping with pentacene. An efficient energy transfer from the picene host matrix to the pentacene guest molecules was observed giving rise to an intense photoluminescence coming out from pentacene. This efficient mechanism opens the possibility to exploit applications where the excitonic states of the guest component, pentacene, are of major interest such as MASER. The observed mechanism could also serve as prototypical system for the study of the photophysics of host guest systems based on different phenacenes and acenes.
Doping ferroelectric Hf0.5Zr0.5O2 with La is a promising route to improve endurance. However, the beneficial effect of La on the endurance of polycrystalline films may be accompanied by degradation of the retention. We have investigated the endurance
BaSnO_{3}, a high mobility perovskite oxide, is an attractive material for oxide-based electronic devices. However, in addition to low-field mobility, high-field transport properties such as the saturation velocity of carriers play a major role in de
Ferroelectric HfO2-based materials hold great potential for widespread integration of ferroelectricity into modern electronics due to their robust ferroelectric properties at the nanoscale and compatibility with the existing Si technology. Earlier wo
Transparent pure and Cu-doped (2.5, 5 and 10 at. %) anatase TiO2 thin films were grown by pulsed laser deposition technique on LaAlO3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The
Ultra-thin oxide (UTO) films were grown on Si(111) in ultrahigh vacuum at room temperature and characterized by scanning tunneling microscopy. The ultra-thin oxide films were then used as substrates for room temperature growth of pentacene. The appar