ﻻ يوجد ملخص باللغة العربية
We consider the random-bond +- J Ising model on a square lattice as a function of the temperature T and of the disorder parameter p (p=1 corresponds to the pure Ising model). We investigate the critical behavior along the paramagnetic-ferromagnetic transition line at low temperatures, below the temperature of the multicritical Nishimori point at T*= 0.9527(1), p*=0.89083(3). We present finite-size scaling analyses of Monte Carlo results at two temperature values, T=0.645 and T=0.5. The results show that the paramagnetic-ferromagnetic transition line is reentrant for T<T*, that the transitions are continuous and controlled by a strong-disorder fixed point with critical exponents nu=1.50(4) and eta=0.128(8), and beta = 0.095(5). This fixed point is definitely different from the Ising fixed point controlling the paramagnetic-ferromagnetic transitions for T>T*. Our results for the critical exponents are consistent with the hyperscaling relation 2 beta/nu - eta = d - 2 = 0.
The site-diluted transverse field Ising model in two dimensions is studied with Quantum-Monte-Carlo simulations. Its phase diagram is determined in the transverse field (Gamma) and temperature (T) plane for various (fixed) concentrations (p). The nat
The J$_1$-J$_2$ Ising model in the square lattice in the presence of an external field is studied by two approaches: the Cluster Variation Method (CVM) and Monte Carlo simulations. The use of the CVM in the square approximation leads to the presence
The effect of randomness on critical behavior is a crucial subject in condensed matter physics due to the the presence of impurity in any real material. We presently probe the critical behaviour of the antiferromagnetic (AF) Ising model on rewired sq
We consider the three-dimensional $pm J$ model defined on a simple cubic lattice and study its behavior close to the multicritical Nishimori point where the paramagnetic-ferromagnetic, the paramagnetic-glassy, and the ferromagnetic-glassy transition
We consider the two-dimensional randomly site diluted Ising model and the random-bond +-J Ising model (also called Edwards-Anderson model), and study their critical behavior at the paramagnetic-ferromagnetic transition. The critical behavior of therm