ﻻ يوجد ملخص باللغة العربية
We consider the two-dimensional randomly site diluted Ising model and the random-bond +-J Ising model (also called Edwards-Anderson model), and study their critical behavior at the paramagnetic-ferromagnetic transition. The critical behavior of thermodynamic quantities can be derived from a set of renormalization-group equations, in which disorder is a marginally irrelevant perturbation at the two-dimensional Ising fixed point. We discuss their solutions, focusing in particular on the universality of the logarithmic corrections arising from the presence of disorder. Then, we present a finite-size scaling analysis of high-statistics Monte Carlo simulations. The numerical results confirm the renormalization-group predictions, and in particular the universality of the logarithmic corrections to the Ising behavior due to quenched dilution.
We study the purely relaxational dynamics (model A) at criticality in three-dimensional disordered Ising systems whose static critical behaviour belongs to the randomly diluted Ising universality class. We consider the site-diluted and bond-diluted I
The site-diluted transverse field Ising model in two dimensions is studied with Quantum-Monte-Carlo simulations. Its phase diagram is determined in the transverse field (Gamma) and temperature (T) plane for various (fixed) concentrations (p). The nat
For the 2D Ising model, we analyzed dependences of thermodynamic characteristics on number of spins by means of computer simulations. We compared experimental data obtained using the Fisher-Kasteleyn algorithm on a square lattice with $N=l{times}l$ s
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p
We investigate the performance of the recently proposed stationary Fokker-Planck sampling method considering a combinatorial optimization problem from statistical physics. The algorithmic procedure relies upon the numerical solution of a linear secon