ﻻ يوجد ملخص باللغة العربية
We consider the three-dimensional $pm J$ model defined on a simple cubic lattice and study its behavior close to the multicritical Nishimori point where the paramagnetic-ferromagnetic, the paramagnetic-glassy, and the ferromagnetic-glassy transition lines meet in the T-p phase diagram (p characterizes the disorder distribution and gives the fraction of ferromagnetic bonds). For this purpose we perform Monte Carlo simulations on cubic lattices of size $Lle 32$ and a finite-size scaling analysis of the numerical results. The magnetic-glassy multicritical point is found at $p^*=0.76820(4)$, along the Nishimori line given by $2p-1={rm Tanh}(J/T)$. We determine the renormalization-group dimensions of the operators that control the renormalization-group flow close to the multicritical point, $y_1 = 1.02(5)$, $y_2 = 0.61(2)$, and the susceptibility exponent $eta = -0.114(3)$. The temperature and crossover exponents are $ u=1/y_2=1.64(5)$ and $phi=y_1/y_2 = 1.67(10)$, respectively. We also investigate the model-A dynamics, obtaining the dynamic critical exponent $z = 5.0(5)$.
The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be studied numerically with the help of efficient ground-state algorithms. In this study, we extend these algorithm by various methods in order to analyze low-ene
We discuss universal and non-universal critical exponents of a three dimensional Ising system in the presence of weak quenched disorder. Both experimental, computational, and theoretical results are reviewed. Special attention is paid to the results
We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes
The existence of an equilibrium glassy phase for charges in a disordered potential with long-range electrostatic interactions has remained controversial for many years. Here we conduct an extensive numerical study of the disorder-temperature phase di
We use large-scale Monte Carlo simulations to test the Weinrib-Halperin criterion that predicts new universality classes in the presence of sufficiently slowly decaying power-law-correlated quenched disorder. While new universality classes are reason