ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical properties of the antiferromagnetic Ising model on rewired square lattices

60   0   0.0 ( 0 )
 نشر من قبل Tasrief Surungan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of randomness on critical behavior is a crucial subject in condensed matter physics due to the the presence of impurity in any real material. We presently probe the critical behaviour of the antiferromagnetic (AF) Ising model on rewired square lattices with random connectivity. An extra link is randomly added to each site of the square lattice to connect the site to one of its next-nearest neighbours, thus having different number of connections (links). Average number of links (ANOL) $kappa$ is fractional, varied from 2 to 3, where $kappa = 2$ associated with the native square lattice. The rewired lattices possess abundance of triangular units in which spins are frustrated due to AF interaction. The system is studied by using Monte Carlo method with Replica Exchange algorithm. Some physical quantities of interests were calculated, such as the specific heat, the staggered magnetization and the spin glass order parameter (Edward-Anderson parameter). We investigate the role played by the randomness in affecting the existing phase transition and its interplay with frustration to possibly bring any spin glass (SG) properties. We observed the low temperature magnetic ordered phase (Neel phase) preserved up to certain value of $kappa$ and no indication of SG phase for any value of $kappa$.



قيم البحث

اقرأ أيضاً

Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect and aging phenomena. There are two main ingred ients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi {it et al.} [ Phys. Rev. B{bf 73}, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan {it et. al.} [Journal of Physics: Conference Series 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.
We investigate the critical properties of the Ising model in two dimensions on {it directed} small-world lattice with quenched connectivity disorder. The disordered system is simulated by applying the Monte Carlo update heat bath algorithm. We calcul ate the critical temperature, as well as the critical exponents $gamma/ u$, $beta/ u$, and $1/ u$ for several values of the rewiring probability $p$. We find that this disorder system does not belong to the same universality class as the regular two-dimensional ferromagnetic model. The Ising model on {it directed} small-world lattices presents in fact a second-order phase transition with new critical exponents which do not dependent of $p$, but are identical to the exponents of the Ising model and the spin-1 Blume-Capel model on {it directed} small-world network.
For the 2D Ising model, we analyzed dependences of thermodynamic characteristics on number of spins by means of computer simulations. We compared experimental data obtained using the Fisher-Kasteleyn algorithm on a square lattice with $N=l{times}l$ s pins and the asymptotic Onsager solution ($Ntoinfty$). We derived empirical expressions for critical parameters as functions of $N$ and generalized the Onsager solution on the case of a finite-size lattice. Our analytical expressions for the free energy and its derivatives (the internal energy, the energy dispersion and the heat capacity) describe accurately the results of computer simulations. We showed that when $N$ increased the heat capacity in the critical point increased as $lnN$. We specified restrictions on the accuracy of the critical temperature due to finite size of our system. Also in the finite-dimensional case, we obtained expressions describing temperature dependences of the magnetization and the correlation length. They are in a good qualitative agreement with the results of computer simulations by means of the dynamic Metropolis Monte Carlo method.
The site-diluted transverse field Ising model in two dimensions is studied with Quantum-Monte-Carlo simulations. Its phase diagram is determined in the transverse field (Gamma) and temperature (T) plane for various (fixed) concentrations (p). The nat ure of the quantum Griffiths phase at zero temperature is investigated by calculating the distribution of the local zero-frequency susceptibility. It is pointed out that the nature of the Griffiths phase is different for small and large Gamma.
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p roperties using renormalization group up to two-loop order. We show that beside the Gaussian fixed point the flow equations have a non trivial fixed point which is stable for $0.995<a<2$ and is characterized by the correlation length exponent $ u= 2/a + O((2-a)^3)$. Using bosonization, we also calculate the averaged square of the spin-spin correlation function and find the corresponding critical exponent $eta_2=1/2-(2-a)/4+O((2-a)^2)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا