ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic versus Static Structure Functions and Novel Diffractive Effects in QCD

9   0   0.0 ( 0 )
 نشر من قبل Stanley J. Brodsky
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Initial- and final-state rescattering, neglected in the parton model, have a profound effect in QCD hard-scattering reactions, predicting single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions. I emphasize the importance of distinguishing between static observables such as the probability distributions computed from the square of the light-front wavefunctions versus dynamical observables which include the effects of rescattering.

قيم البحث

اقرأ أيضاً

The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD. Light-front holography allows hadronic amplitudes in the AdS fifth dim ension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. We identify the AdS coordinate $z$ with an invariant light-front coordinate $zeta$ which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schrodinger equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The mapping of electromagnetic and gravitational form factors in AdS space to their corresponding expressions in light-front theory confirms this correspondence. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates and the behavior of the QCD coupling in the infrared. The distinction between static structure functions such as the probability distributions computed from the square of the light-front wavefunctions versus dynamical structure functions which include the effects of rescattering is emphasized. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.
We study the effect of various perturbative and nonperturbative QCD corrections on the free nucleon structure functions ($F_{iN}^{WI}(x,Q^2); ~i=1-3$) and their implications in the determination of nuclear structure functions. The evaluation of the n ucleon structure functions has been performed by using the MMHT 2014 PDFs parameterization, and the TMC and HT effects are incorporated following the works of Schienbein et al. and Dasgupta et al., respectively. These nucleon structure functions are taken as input in the determination of nuclear structure functions. The numerical calculations for the $ u_l/bar u_l-A$ DIS process have been performed by incorporating the nuclear medium effects like Fermi motion, binding energy, nucleon correlations, mesonic contributions, shadowing and antishadowing in several nuclear targets such as carbon, polystyrene scintillator, iron and lead which are being used in MINERvA, and in argon nucleus which is relevant for the ArgoNeuT and DUNE experiments. The differential scattering cross sections $frac{d^2sigma_A^{WI}}{dx dy}$ and $(frac{dsigma_A^{WI}}{dx}/frac{dsigma_{CH}^{WI}}{dx})$ have also been studied in the kinematic region of MINERvA experiment. The theoretical results are compared with the recent experimental data of MINERvA and the earlier data of NuTeV, CCFR, CDHSW and CHORUS collaborations. Moreover, a comparative analysis of the present results for the ratio $(frac{dsigma_A^{WI}}{dx}/frac{dsigma_{CH}^{WI}}{dx})$, and the results from the MC generator GENIE and other phenomenological models of Bodek and Yang, and Cloet et al., has been performed in the context of MINERvA experiment. The predictions have also been made for $bar u_l-A$ cross section relevant for MINERvA experiment.
87 - E. Sauvan 2006
New measurements of the reduced cross section $sigma_r^{D(3)}$ for the diffractive process $ep to eXY$ in the kinematic domain $12 leq Q^2 leq 90$ GeV$^2$, $0.01 leq beta leq 0.65$ and $xpom<0.1$ are presented. Data events recorded by the H1 detector during the years 1999--2000 and 2004 have been used, corresponding to a total integrated luminosity of 68 pb$^{-1}$. The measurements are derived in the same range as previous H1 data, namely $M_Y < 1.6$ GeV and $|t| < 1.0$ GeV$^2$. Two different analysis methods, rapidity gap and $M_X$, are used and similar results are obtained in the kinematic domain of overlap. Finally, together with previous data, the diffractive structure function measurements are analysed with a model based on the dipole formulation of diffractive scattering. It is found to give a very good description of the data over the whole kinematic range.
A new method of extracting diffractive parton distributions is presented which avoids the use of Regge theory ansatz and is in much closer relation with the factorisation theorem for diffractive hard processes.
We review the status of lattice calculations of the deep-inelastic structure functions of the nucleon. In addition, we present some results on the pion and rho structure functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا