ﻻ يوجد ملخص باللغة العربية
We study the effect of various perturbative and nonperturbative QCD corrections on the free nucleon structure functions ($F_{iN}^{WI}(x,Q^2); ~i=1-3$) and their implications in the determination of nuclear structure functions. The evaluation of the nucleon structure functions has been performed by using the MMHT 2014 PDFs parameterization, and the TMC and HT effects are incorporated following the works of Schienbein et al. and Dasgupta et al., respectively. These nucleon structure functions are taken as input in the determination of nuclear structure functions. The numerical calculations for the $ u_l/bar u_l-A$ DIS process have been performed by incorporating the nuclear medium effects like Fermi motion, binding energy, nucleon correlations, mesonic contributions, shadowing and antishadowing in several nuclear targets such as carbon, polystyrene scintillator, iron and lead which are being used in MINERvA, and in argon nucleus which is relevant for the ArgoNeuT and DUNE experiments. The differential scattering cross sections $frac{d^2sigma_A^{WI}}{dx dy}$ and $(frac{dsigma_A^{WI}}{dx}/frac{dsigma_{CH}^{WI}}{dx})$ have also been studied in the kinematic region of MINERvA experiment. The theoretical results are compared with the recent experimental data of MINERvA and the earlier data of NuTeV, CCFR, CDHSW and CHORUS collaborations. Moreover, a comparative analysis of the present results for the ratio $(frac{dsigma_A^{WI}}{dx}/frac{dsigma_{CH}^{WI}}{dx})$, and the results from the MC generator GENIE and other phenomenological models of Bodek and Yang, and Cloet et al., has been performed in the context of MINERvA experiment. The predictions have also been made for $bar u_l-A$ cross section relevant for MINERvA experiment.
The quasielastic charged current (CCQE) $ u_e n rightarrow e^- p$ scattering is the dominant mechanism to detect appearance of a $ u_e$ in an almost $ u_mu$ flux at the 1 GeV scale. Actual experiments show a precision below 1% and between less known
The effect of nonperturbative and higher order perturbative corrections to all the free nucleon structure functions ($F_{iN}(x,Q^2); i=1-5$) in the DIS of $ u_tau/{bar u}_tau$ on nucleon is studied. The target mass correction (TMC) and higher twist
The QCD-string model for baryons derived by Simonov and used for the calculation of baryon magnetic moments in a previous paper is extended to include also perturbative gluon and meson exchanges. The mass spectrum of the baryon multiplet is studied.
We employ the $Btopi$ form factors obtained from QCD light-cone sum rules and calculate the $Bto pi ell u_l$ width ($ell=e,mu$) in units of $1/|V_{ub}|^2$, integrated over the region of accessible momentum transfers, $0leq q^2leq 12.0 ~GeV^2$. Using
We evaluate the partial decay widths for the semileptonic $Lambda_b to bar u_l l Lambda_c(2595)$ and $Lambda_b to bar u_l l Lambda_c(2625)$ decays from the perspective that these two $Lambda^*_c$ resonances are dynamically generated from the $DN$ a